Use the trapezium rule with four strips to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing your working.
Fig. 1 shows a sketch of \(y = \sqrt { 1 + \mathrm { e } ^ { x } }\).
\begin{figure}[h]
Suppose that the trapezium rule is used with more strips than in part (i) to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\). State, with a reason but no further calculation, whether this would give a larger or smaller estimate.