Edexcel Paper 1 Specimen — Question 1

Exam BoardEdexcel
ModulePaper 1 (Paper 1)
SessionSpecimen
TopicArea Under & Between Curves

1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{96e004d9-c6b6-474b-9b67-06e1771c609e-02_659_853_349_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \frac { x } { 1 + \sqrt { x } } , x \geqslant 0\)
The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the line with equation \(x = 1\), the \(x\)-axis and the line with equation \(x = 3\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { x } { 1 + \sqrt { } x }\)
\(x\)11.522.53
\(y\)0.50.67420.82840.96861.0981
  1. Use the trapezium rule, with all the values of \(y\) in the table, to find an estimate for the area of \(R\), giving your answer to 3 decimal places.
  2. Explain how the trapezium rule can be used to give a better approximation for the area of \(R\).
  3. Giving your answer to 3 decimal places in each case, use your answer to part (a) to deduce an estimate for
    1. \(\int _ { 1 } ^ { 3 } \frac { 5 x } { 1 + \sqrt { x } } \mathrm {~d} x\)
    2. \(\int _ { 1 } ^ { 3 } \left( 6 + \frac { x } { 1 + \sqrt { x } } \right) \mathrm { d } x\)