AQA C2 2005 June — Question 4

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2005
SessionJune
TopicArea Under & Between Curves

4 The diagram shows a curve \(C\) with equation \(y = \sqrt { x }\). The point \(O\) is the origin \(( 0,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{37627fc4-a90b-4f3b-9b10-0a9e200f8485-3_488_1136_1009_443} The region bounded by the curve \(C\), the \(x\)-axis and the vertical lines \(x = 1\) and \(x = 4\) is shown shaded in the diagram.
    1. Write \(\sqrt { x }\) in the form \(x ^ { p }\), where \(p\) is a constant.
    2. Find \(\int \sqrt { x } \mathrm {~d} x\).
    3. Hence find the area of the shaded region.
  1. The point on \(C\) for which \(x = 4\) is \(P\). The tangent to \(C\) at the point \(P\) intersects the \(x\)-axis and the \(y\)-axis at the points \(A\) and \(B\) respectively.
    1. Find an equation for the tangent to the curve \(C\) at the point \(P\).
    2. Find the area of the triangle \(A O B\).
  2. Describe the single geometrical transformation by which the curve with equation \(y = \sqrt { x - 1 }\) can be obtained from the curve \(C\).
  3. Use the trapezium rule with four ordinates (three strips) to find an approximation for \(\int _ { 1 } ^ { 4 } \sqrt { x - 1 } \mathrm {~d} x\), giving your answer to three significant figures.