Edexcel AEA 2023 June — Question 4

Exam BoardEdexcel
ModuleAEA (Advanced Extension Award)
Year2023
SessionJune
TopicArea Under & Between Curves

4.(a)Use the trapezium rule with 4 strips to find an approximate value for $$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$ (b)Use the trapezium rule with \(n\) strips to write down an expression that would give an approximate value for $$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$ (c)Hence show that $$\int _ { 0 } ^ { 1 } 16 ^ { x } \mathrm {~d} x = \lim _ { n \rightarrow \infty } \left( \frac { 1 } { n } \left( 1 + 16 ^ { \frac { 1 } { n } } + \ldots + 16 ^ { \frac { n - 1 } { n } } \right) \right)$$ (d)Use integration to determine the exact value of $$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$ Given that the limit exists,
(e)use part(c)and the answer to part(d)to determine the exact value of $$\lim _ { x \rightarrow 0 } \frac { 16 ^ { x } - 1 } { x }$$