| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2023 |
| Session | June |
| Topic | Area Under & Between Curves |
4.(a)Use the trapezium rule with 4 strips to find an approximate value for
$$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$
(b)Use the trapezium rule with \(n\) strips to write down an expression that would give an approximate value for
$$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$
(c)Hence show that
$$\int _ { 0 } ^ { 1 } 16 ^ { x } \mathrm {~d} x = \lim _ { n \rightarrow \infty } \left( \frac { 1 } { n } \left( 1 + 16 ^ { \frac { 1 } { n } } + \ldots + 16 ^ { \frac { n - 1 } { n } } \right) \right)$$
(d)Use integration to determine the exact value of
$$\int _ { 0 } ^ { 1 } 16 ^ { x } d x$$
Given that the limit exists,
(e)use part(c)and the answer to part(d)to determine the exact value of
$$\lim _ { x \rightarrow 0 } \frac { 16 ^ { x } - 1 } { x }$$