CAIE P3 2018 November — Question 7 4 marks

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2018
SessionNovember
Marks4
TopicIntegration by Substitution

7
\includegraphics[max width=\textwidth, alt={}, center]{c861e691-66da-4269-9057-4a343be9835e-12_357_565_260_790} The diagram shows the curve \(y = 5 \sin ^ { 2 } x \cos ^ { 3 } x\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\). The shaded region \(R\) is bounded by the curve and the \(x\)-axis.
  1. Find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
  2. Using the substitution \(u = \sin x\) and showing all necessary working, find the exact area of \(R\). [4]