CAIE P3 2019 March — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2019
SessionMarch
TopicIntegration by Substitution

10
\includegraphics[max width=\textwidth, alt={}, center]{dcfbe7af-c212-42b1-8a90-8e0418cf0ffd-16_330_689_264_726} The diagram shows the curve \(y = \sin ^ { 3 } x \sqrt { } ( \cos x )\) for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\), and its maximum point \(M\).
  1. Using the substitution \(u = \cos x\), find by integration the exact area of the shaded region bounded by the curve and the \(x\)-axis.
  2. Showing all your working, find the \(x\)-coordinate of \(M\), giving your answer correct to 3 decimal places.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.