Integrate using double angle

A question is this type if and only if it requires evaluating a definite or indefinite integral by first expressing the integrand (often sin²x, cos²x, sin³x, or cos³x) in terms of double angle formulae.

9 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE P2 2012 June Q7
9 marks Standard +0.3
7
  1. Show that \(( 2 \sin x + \cos x ) ^ { 2 }\) can be written in the form \(\frac { 5 } { 2 } + 2 \sin 2 x - \frac { 3 } { 2 } \cos 2 x\).
  2. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } ( 2 \sin x + \cos x ) ^ { 2 } \mathrm {~d} x\).
CAIE P2 2013 June Q3
6 marks Standard +0.3
3
  1. Show that \(12 \sin ^ { 2 } x \cos ^ { 2 } x \equiv \frac { 3 } { 2 } ( 1 - \cos 4 x )\).
  2. Hence show that $$\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } 12 \sin ^ { 2 } x \cos ^ { 2 } x d x = \frac { \pi } { 8 } + \frac { 3 \sqrt { } 3 } { 16 }$$
CAIE P3 2004 June Q5
6 marks Standard +0.3
5
  1. Prove the identity $$\sin ^ { 2 } \theta \cos ^ { 2 } \theta \equiv \frac { 1 } { 8 } ( 1 - \cos 4 \theta )$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \sin ^ { 2 } \theta \cos ^ { 2 } \theta \mathrm {~d} \theta$$
CAIE P3 2005 June Q4
7 marks Standard +0.3
4
  1. Use the substitution \(x = \tan \theta\) to show that $$\int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x = \int \cos 2 \theta \mathrm {~d} \theta$$
  2. Hence find the value of $$\int _ { 0 } ^ { 1 } \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x$$
CAIE P3 2010 November Q4
6 marks Moderate -0.3
4 It is given that \(\mathrm { f } ( x ) = 4 \cos ^ { 2 } 3 x\).
  1. Find the exact value of \(\mathrm { f } ^ { \prime } \left( \frac { 1 } { 9 } \pi \right)\).
  2. Find \(\int \mathrm { f } ( x ) \mathrm { d } x\).
CAIE P3 2024 June Q7
9 marks Standard +0.3
7
  1. Show that \(\cos ^ { 4 } \theta - \sin ^ { 4 } \theta \equiv \cos 2 \theta\).
  2. Hence find the exact value of \(\int _ { - \frac { 1 } { 8 } \pi } ^ { \frac { 1 } { 8 } \pi } \left( \cos ^ { 4 } \theta - \sin ^ { 4 } \theta + 4 \sin ^ { 2 } \theta \cos ^ { 2 } \theta \right) \mathrm { d } \theta\).
OCR C4 2014 June Q4
5 marks Standard +0.8
4 Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 1 - 2 \sin ^ { 2 } x } { 1 + 2 \sin x \cos x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).
CAIE FP1 2013 June Q7
10 marks Challenging +1.2
7 By considering the binomial expansion of \(\left( z - \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), express \(\sin ^ { 6 } \theta\) in the form $$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$ where \(p , q , r\) and \(s\) are integers to be determined. Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 6 } \theta \mathrm {~d} \theta\).
Edexcel C4 Q3
14 marks Challenging +1.2
3. (a) Use the identity for \(\cos ( A + B )\) to prove that \(\cos 2 A = 2 \cos ^ { 2 } A - 1\).
(b) Use the substitution \(x = 2 \sqrt { } 2 \sin \theta\) to prove that $$\int _ { 2 } ^ { \sqrt { 6 } } \sqrt { \left( 8 - x ^ { 2 } \right) } \mathrm { d } x = \frac { 1 } { 3 } ( \pi + 3 \sqrt { } 3 - 6 ) .$$ A curve is given by the parametric equations $$x = \sec \theta , \quad y = \ln ( 1 + \cos 2 \theta ) , \quad 0 \leq \theta < \frac { \pi } { 2 } .$$ (c) Find an equation of the tangent to the curve at the point where \(\theta = \frac { \pi } { 3 }\).