| Exam Board | OCR |
| Module | C4 (Core Mathematics 4) |
| Year | 2014 |
| Session | June |
| Topic | Addition & Double Angle Formulae |
4 Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 1 - 2 \sin ^ { 2 } x } { 1 + 2 \sin x \cos x } \mathrm {~d} x = \frac { 1 } { 2 } \ln 2\).