A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q4
CAIE P3 2005 June — Question 4
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2005
Session
June
Topic
Addition & Double Angle Formulae
4
Use the substitution \(x = \tan \theta\) to show that $$\int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x = \int \cos 2 \theta \mathrm {~d} \theta$$
Hence find the value of $$\int _ { 0 } ^ { 1 } \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x$$
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10