Prove identity with double/compound angles

A question is this type if and only if it requires proving a trigonometric identity by expanding and simplifying expressions involving double angle formulae and/or compound angle formulae (e.g., proving sin 2θ(cosec θ - sec θ) ≡ expression).

15 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
CAIE P3 2017 November Q4
7 marks Standard +0.3
4
  1. Prove the identity \(\tan \left( 45 ^ { \circ } + x \right) + \tan \left( 45 ^ { \circ } - x \right) \equiv 2 \sec 2 x\).
  2. Hence sketch the graph of \(y = \tan \left( 45 ^ { \circ } + x \right) + \tan \left( 45 ^ { \circ } - x \right)\) for \(0 ^ { \circ } \leqslant x \leqslant 90 ^ { \circ }\).
Edexcel C3 2017 June Q9
9 marks Standard +0.3
  1. (a) Prove that
$$\sin 2 x - \tan x \equiv \tan x \cos 2 x , \quad x \neq ( 2 n + 1 ) 90 ^ { \circ } , \quad n \in \mathbb { Z }$$ (b) Given that \(x \neq 90 ^ { \circ }\) and \(x \neq 270 ^ { \circ }\), solve, for \(0 \leqslant x < 360 ^ { \circ }\), $$\sin 2 x - \tan x = 3 \tan x \sin x$$ Give your answers in degrees to one decimal place where appropriate.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
\includegraphics[max width=\textwidth, alt={}]{f0a633e3-5c63-4d21-8ffa-d4e7dc43a536-32_2632_1826_121_121}
OCR MEI C4 2011 January Q5
3 marks Moderate -0.8
5 Show that \(\frac { \sin 2 \theta } { 1 + \cos 2 \theta } = \tan \theta\).
OCR H240/01 2021 November Q10
11 marks Moderate -0.3
10

  1. \includegraphics[max width=\textwidth, alt={}, center]{6b766f5c-8533-4e0c-bb10-0d9949dc777b-7_599_780_267_328} The diagram shows triangle \(A B C\). The perpendicular from \(C\) to \(A B\) meets \(A B\) at \(D\). Angle \(A C D = x\), angle \(D C B = y\), length \(B C = a\) and length \(A C = b\).
    1. Explain why the length of \(C D\) can be written as \(a \cos y\).
    2. Show that the area of the triangle \(A D C\) is given by \(\frac { 1 } { 2 } a b \sin x \cos y\).
    3. Hence, or otherwise, show that \(\sin ( x + y ) = \sin x \cos y + \cos x \sin y\).
  2. Given that \(\sin \left( 30 ^ { \circ } + \alpha \right) = \cos \left( 45 ^ { \circ } - \alpha \right)\), show that \(\tan \alpha = 2 + \sqrt { 6 } - \sqrt { 3 } - \sqrt { 2 }\).
OCR H240/01 2023 June Q7
9 marks Moderate -0.3
7
  1. Use the result \(\cos ( A + B ) = \cos A \cos B - \sin A \sin B\) to show that \(\cos ( A - B ) = \cos A \cos B + \sin A \sin B\). The function \(\mathrm { f } ( \theta )\) is defined as \(\cos \left( \theta + 30 ^ { \circ } \right) \cos \left( \theta - 30 ^ { \circ } \right)\), where \(\theta\) is in degrees.
  2. Show that \(f ( \theta ) = \cos ^ { 2 } \theta - \frac { 1 } { 4 }\).
    1. Determine the following.
      • The maximum value of \(\mathrm { f } ( \theta )\)
  3. The smallest positive value of \(\theta\) for which this maximum value occurs
    (ii) Determine the following.
  4. The minimum value of \(\mathrm { f } ( \theta )\)
  5. The smallest positive value of \(\theta\) for which this minimum value occurs
OCR H240/02 2018 June Q4
4 marks Moderate -0.3
4 Prove that \(\sin ^ { 2 } ( \theta + 45 ) ^ { \circ } - \cos ^ { 2 } ( \theta + 45 ) ^ { \circ } \equiv \sin 2 \theta ^ { \circ }\).
Edexcel C3 Q4
6 marks Moderate -0.3
4. Prove that $$\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } \equiv \cos 2 \theta$$ \section*{EDEXCEL CORE MATHEMATICS PRACTICE PAPER 1}
CAIE P2 2007 November Q7
8 marks Standard +0.3
  1. Prove the identity $$( \cos x + 3 \sin x ) ^ { 2 } \equiv 5 - 4 \cos 2 x + 3 \sin 2 x$$
  2. Using the identity, or otherwise, find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } ( \cos x + 3 \sin x ) ^ { 2 } d x$$
AQA C4 2007 January Q7
6 marks Moderate -0.3
7
  1. Use the identity $$\tan ( A + B ) = \frac { \tan A + \tan B } { 1 - \tan A \tan B }$$ to express \(\tan 2 x\) in terms of \(\tan x\).
  2. Show that $$2 - 2 \tan x - \frac { 2 \tan x } { \tan 2 x } = ( 1 - \tan x ) ^ { 2 }$$ for all values of \(x , \tan 2 x \neq 0\).
AQA C4 2006 June Q4
9 marks Moderate -0.8
4
    1. Express \(\sin 2 x\) in terms of \(\sin x\) and \(\cos x\).
    2. Express \(\cos 2 x\) in terms of \(\cos x\).
  1. Show that $$\sin 2 x - \tan x = \tan x \cos 2 x$$ for all values of \(x\).
  2. Solve the equation \(\sin 2 x - \tan x = 0\), giving all solutions in degrees in the interval \(0 ^ { \circ } < x < 360 ^ { \circ }\).
AQA FP2 2007 January Q7
9 marks Challenging +1.2
7
  1. Use the identity \(\tan ( A - B ) = \frac { \tan A - \tan B } { 1 + \tan A \tan B }\) with \(A = ( r + 1 ) x\) and \(B = r x\) to show that $$\tan r x \tan ( r + 1 ) x = \frac { \tan ( r + 1 ) x } { \tan x } - \frac { \tan r x } { \tan x } - 1$$ (4 marks)
  2. Use the method of differences to show that $$\tan \frac { \pi } { 50 } \tan \frac { 2 \pi } { 50 } + \tan \frac { 2 \pi } { 50 } \tan \frac { 3 \pi } { 50 } + \ldots + \tan \frac { 19 \pi } { 50 } \tan \frac { 20 \pi } { 50 } = \frac { \tan \frac { 2 \pi } { 5 } } { \tan \frac { \pi } { 50 } } - 20$$
OCR H240/02 2020 November Q6
3 marks Standard +0.3
6 Prove that \(\sqrt { 2 } \cos \left( 2 \theta + 45 ^ { \circ } \right) \equiv \cos ^ { 2 } \theta - 2 \sin \theta \cos \theta - \sin ^ { 2 } \theta\), where \(\theta\) is measured in degrees.
\(7 \quad A\) and \(B\) are fixed points in the \(x - y\) plane. The position vectors of \(A\) and \(B\) are \(\mathbf { a }\) and \(\mathbf { b }\) respectively. State, with reference to points \(A\) and \(B\), the geometrical significance of
  1. the quantity \(| \mathbf { a } - \mathbf { b } |\),
  2. the vector \(\frac { 1 } { 2 } ( \mathbf { a } + \mathbf { b } )\). The circle \(P\) is the set of points with position vector \(\mathbf { p }\) in the \(x - y\) plane which satisfy \(\left| \mathbf { p } - \frac { 1 } { 2 } ( \mathbf { a } + \mathbf { b } ) \right| = \frac { 1 } { 2 } | \mathbf { a } - \mathbf { b } |\).
  3. State, in terms of \(\mathbf { a }\) and \(\mathbf { b }\),
    1. the position vector of the centre of \(P\),
    2. the radius of \(P\). It is now given that \(\mathbf { a } = \binom { 2 } { - 1 } , \mathbf { b } = \binom { 4 } { 5 }\) and \(\mathbf { p } = \binom { x } { y }\).
  4. Find a cartesian equation of \(P\).
AQA Paper 1 2018 June Q14
7 marks Standard +0.3
14 Some students are trying to prove an identity for \(\sin ( A + B )\). They start by drawing two right-angled triangles \(O D E\) and \(O E F\), as shown.
\includegraphics[max width=\textwidth, alt={}, center]{85b10472-8149-4387-999f-2ef153f1a105-22_695_662_477_689} The students' incomplete proof continues,
Let angle \(D O E = A\) and angle \(E O F = B\).
In triangle OFR,
Line \(1 \quad \sin ( A + B ) = \frac { R F } { O F }\) Line 2 $$= \frac { R P + P F } { O F }$$ Line 3 $$= \frac { D E } { O F } + \frac { P F } { O F } \text { since } D E = R P$$ Line 4 $$= \frac { D E } { \cdots \cdots } \times \frac { \cdots \cdots } { O F } + \frac { P F } { E F } \times \frac { E F } { O F }$$ Line 5
\(=\) \(\_\_\_\_\) \(+ \cos A \sin B\) 14
  1. Explain why \(\frac { P F } { E F } \times \frac { E F } { O F }\) in Line 4 leads to \(\cos A \sin B\) in Line 5
    14
  2. Complete Line 4 and Line 5 to prove the identity Line 4 $$= \frac { D E } { \ldots \ldots } \times \frac { \cdots \ldots } { O F } + \frac { P F } { E F } \times \frac { E F } { O F }$$ Line 5 = \(+ \cos A \sin B\) 14
  3. Explain why the argument used in part (a) only proves the identity when \(A\) and \(B\) are acute angles. 14
  4. Another student claims that by replacing \(B\) with \(- B\) in the identity for \(\sin ( A + B )\) it is possible to find an identity for \(\sin ( A - B )\). Assuming the identity for \(\sin ( A + B )\) is correct for all values of \(A\) and \(B\), prove a similar result for \(\sin ( A - B )\).
AQA Paper 2 2021 June Q9
9 marks Standard +0.3
9 A robotic arm which is attached to a flat surface at the origin \(O\), is used to draw a graphic design. The arm is made from two rods \(O P\) and \(P Q\), each of length \(d\), which are joined at \(P\).
A pen is attached to the arm at \(Q\).
The coordinates of the pen are controlled by adjusting the angle \(O P Q\) and the angle \(\theta\) between \(O P\) and the \(x\)-axis. For this particular design the pen is made to move so that the two angles are always equal to each other with \(0 \leq \theta \leq \frac { \pi } { 2 }\) as shown in Figure 2. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{b7df05bf-f3fc-4705-a13c-6b562896fa9f-12_805_867_989_584}
\end{figure} 9
  1. Show that the \(x\)-coordinate of the pen can be modelled by the equation $$x = d \left( \cos \theta + \sin \left( 2 \theta - \frac { \pi } { 2 } \right) \right)$$ 9
  2. Hence, show that $$x = d \left( 1 + \cos \theta - 2 \cos ^ { 2 } \theta \right)$$ 9
  3. It can be shown that $$x = \frac { 9 d } { 8 } - d \left( \cos \theta - \frac { 1 } { 4 } \right) ^ { 2 }$$ State the greatest possible value of \(x\) and the corresponding value of \(\cos \theta\)
    9
  4. Figure 3 below shows the arm when the \(x\)-coordinate is at its greatest possible value. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{b7df05bf-f3fc-4705-a13c-6b562896fa9f-14_570_773_456_630}
    \end{figure} Find, in terms of \(d\), the exact distance \(O Q\).
    \includegraphics[max width=\textwidth, alt={}, center]{b7df05bf-f3fc-4705-a13c-6b562896fa9f-15_2488_1716_219_153}
OCR Further Pure Core 1 2021 June Q3
5 marks Challenging +1.2
3 By expanding \(\left( z ^ { 2 } + \frac { 1 } { z ^ { 2 } } \right) ^ { 3 }\), where \(z = \mathrm { e } ^ { \mathrm { i } \theta }\), show that \(4 \cos ^ { 3 } 2 \theta = \cos 6 \theta + 3 \cos 2 \theta\).