A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q7
AQA C4 2007 January — Question 7
Exam Board
AQA
Module
C4 (Core Mathematics 4)
Year
2007
Session
January
Topic
Addition & Double Angle Formulae
7
Use the identity $$\tan ( A + B ) = \frac { \tan A + \tan B } { 1 - \tan A \tan B }$$ to express \(\tan 2 x\) in terms of \(\tan x\).
Show that $$2 - 2 \tan x - \frac { 2 \tan x } { \tan 2 x } = ( 1 - \tan x ) ^ { 2 }$$ for all values of \(x , \tan 2 x \neq 0\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8