- (a) Prove that
$$\sin 2 x - \tan x \equiv \tan x \cos 2 x , \quad x \neq ( 2 n + 1 ) 90 ^ { \circ } , \quad n \in \mathbb { Z }$$
(b) Given that \(x \neq 90 ^ { \circ }\) and \(x \neq 270 ^ { \circ }\), solve, for \(0 \leqslant x < 360 ^ { \circ }\),
$$\sin 2 x - \tan x = 3 \tan x \sin x$$
Give your answers in degrees to one decimal place where appropriate.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
\includegraphics[max width=\textwidth, alt={}]{f0a633e3-5c63-4d21-8ffa-d4e7dc43a536-32_2632_1826_121_121}