7 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 2 } \frac { \mathrm { x } ^ { \mathrm { n } } } { \sqrt { \mathrm { x } ^ { 3 } + 1 } } \mathrm { dx }\) for integers \(n > 0\).
- By considering the derivative of \(\sqrt { x ^ { 3 } + 1 }\) with respect to \(x\), determine the exact value of \(I _ { 2 }\).
- Given that \(n > 3\), show that \(\left. ( 2 n - 1 ) \right| _ { n } = 3 \times 2 ^ { n - 1 } - \left. 2 ( n - 2 ) \right| _ { n - 3 }\).
- Hence determine the exact value of \(\int _ { 0 } ^ { 2 } x ^ { 5 } \sqrt { x ^ { 3 } + 1 } \mathrm {~d} x\).