Particular solution with initial conditions

A question is this type if and only if it asks to find a particular solution satisfying given initial conditions for y and dy/dx at a specific point.

64 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
CAIE FP1 2012 June Q8
11 marks Standard +0.8
8 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 10 \mathrm { e } ^ { - 2 x }$$ given that \(y = 5\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\).
CAIE FP1 2017 June Q8
10 marks Standard +0.8
8 Find the solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 9 x = 18 t ^ { 2 } + 6 t + 1$$ given that, when \(t = 0 , x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2018 June Q7
10 marks Standard +0.3
7 Find the particular solution of the differential equation $$49 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 14 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 49 x + 735$$ given that when \(x = 0 , y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
CAIE FP1 2019 June Q7
10 marks Standard +0.8
7 Find the particular solution of the differential equation $$10 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - x = t + 2$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2019 June Q8
10 marks Standard +0.8
8 Find the particular solution of the differential equation $$9 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 50 \sin t$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2005 November Q4
7 marks Standard +0.3
4 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 24 \mathrm { e } ^ { 2 x }$$ given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 9\) when \(x = 0\).
CAIE FP1 2008 November Q8
9 marks Standard +0.8
8 Find \(y\) in terms of \(t\), given that $$5 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 5 y = 15 + 12 t + 5 t ^ { 2 }$$ and that \(y = \frac { \mathrm { d } y } { \mathrm {~d} t } = 0\) when \(t = 0\).
CAIE FP1 2015 June Q9
11 marks Standard +0.8
9 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 3 \frac { \mathrm {~d} x } { \mathrm {~d} t } - 10 x = 2 \sin t - 3 \cos t$$ given that, when \(t = 0 , x = 3.3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0.9\).
AQA FP3 2008 January Q3
10 marks Standard +0.3
3
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5$$
  2. Hence express \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) when \(x = 0\).
AQA FP3 2012 January Q3
10 marks Challenging +1.2
3 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 26 \mathrm { e } ^ { x }$$ given that \(y = 5\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 11\) when \(x = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
(10 marks)
AQA FP3 2008 June Q6
14 marks Standard +0.8
6
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 10 \mathrm { e } ^ { - 2 x } - 9$$ (10 marks)
  2. Hence express \(y\) in terms of \(x\), given that \(y = 7\) when \(x = 0\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } \rightarrow 0\) as \(x \rightarrow \infty\).
AQA FP3 2014 June Q4
10 marks Challenging +1.2
4 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \mathrm { e } ^ { - x }$$ given that \(y \rightarrow 0\) as \(x \rightarrow \infty\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 3\) when \(x = 0\).
[0pt] [10 marks] \includegraphics[max width=\textwidth, alt={}, center]{0eb3e96e-528c-4a99-b164-31cc865f0d68-08_46_145_829_159}
AQA FP3 2016 June Q7
10 marks Challenging +1.2
7 Find the solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = 10 \mathrm { e } ^ { 4 x } + 8 \sin 2 x + 4 \cos 2 x$$ given that \(y = 2.5\) when \(x = 0\) and \(y = \frac { \pi } { 4 }\) when \(x = \frac { \pi } { 4 }\).
[0pt] [10 marks]
OCR Further Pure Core 1 2019 June Q11
13 marks Standard +0.8
11 A particle is suspended in a resistive medium from one end of a light spring. The other end of the spring is attached to a point which is made to oscillate in a vertical line. The displacement of the particle may be modelled by the differential equation \(\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 10 \sin t\) where \(x\) is the displacement of the particle below the equilibrium position at time \(t\).
When \(t = 0\) the particle is stationary and its displacement is 2 .
  1. Find the particular solution of the differential equation.
  2. Write down an approximate equation for the displacement when \(t\) is large.
OCR Further Pure Core 2 2020 November Q5
7 marks Standard +0.3
5 A capacitor is an electrical component which stores charge. The value of the charge stored by the capacitor, in suitable units, is denoted by \(Q\). The capacitor is placed in an electrical circuit. At any time \(t\) seconds, where \(t \geqslant 0 , Q\) can be modelled by the differential equation \(\frac { d ^ { 2 } Q } { d t ^ { 2 } } - 2 \frac { d Q } { d t } - 15 Q = 0\). Initially the charge is 100 units and it is given that \(Q\) tends to a finite limit as \(t\) tends to infinity.
  1. Determine the charge on the capacitor when \(t = 0.5\).
  2. Determine the finite limit of \(Q\) as \(t\) tends to infinity.
Edexcel M4 2003 January Q5
17 marks Standard +0.8
5. A particle \(P\) moves in a straight line. At time \(t\) seconds its displacement from a fixed point \(O\) on the line is \(x\) metres. The motion of \(P\) is modelled by the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 x = 12 \cos 2 t - 6 \sin 2 t$$ When \(t = 0 , P\) is at rest at \(O\).
  1. Find, in terms of \(t\), the displacement of \(P\) from \(O\).
  2. Show that \(P\) comes to instantaneous rest when \(t = \frac { \pi } { 4 }\).
  3. Find, in metres to 3 significant figures, the displacement of \(P\) from \(O\) when \(t = \frac { \pi } { 4 }\).
  4. Find the approximate period of the motion for large values of \(t\). \section*{6.} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{618fdb9c-cc0b-4a80-a148-4311c908c94e-5_534_923_388_541}
    \end{figure} A small ball \(Q\) of mass \(2 m\) is at rest at the point \(B\) on a smooth horizontal plane. A second small ball \(P\) of mass \(m\) is moving on the plane with speed \(\frac { 13 } { 12 } u\) and collides with \(Q\). Both the balls are smooth, uniform and of the same radius. The point \(C\) is on a smooth vertical wall \(W\) which is at a distance \(d _ { 1 }\) from \(B\), and \(B C\) is perpendicular to \(W\). A second smooth vertical wall is perpendicular to \(W\) and at a distance \(d _ { 2 }\) from \(B\). Immediately before the collision occurs, the direction of motion of \(P\) makes an angle \(\alpha\) with \(B C\), as shown in Fig. 2, where tan \(\alpha = \frac { 5 } { 12 }\). The line of centres of \(P\) and \(Q\) is parallel to \(B C\). After the collision \(Q\) moves towards \(C\) with speed \(\frac { 3 } { 5 } u\).
  5. Show that, after the collision, the velocity components of \(P\) parallel and perpendicular to \(C B\) are \(\frac { 1 } { 5 } u\) and \(\frac { 5 } { 12 } u\) respectively.
  6. Find the coefficient of restitution between \(P\) and \(Q\).
  7. Show that when \(Q\) reaches \(C , P\) is at a distance \(\frac { 4 } { 3 } d _ { 1 }\) from \(W\). For each collision between a ball and a wall the coefficient of restitution is \(\frac { 1 } { 2 }\).
    Given that the balls collide with each other again,
  8. show that the time between the two collisions of the balls is \(\frac { 15 d _ { 1 } } { u }\),
  9. find the ratio \(d _ { 1 } : d _ { 2 }\). \section*{END}
Edexcel M4 2004 June Q5
16 marks Standard +0.8
5. A particle \(P\) of mass \(m\) is attached to one end of a light elastic string, of natural length \(a\) and modulus of elasticity \(2 m a k ^ { 2 }\), where \(k\) is a positive constant. The other end of the string is attached to a fixed point \(A\). At time \(t = 0 , P\) is released from rest from a point which is a distance \(2 a\) vertically below \(A\). When \(P\) is moving with speed \(v\), the air resistance has magnitude \(2 m k v\). At time \(t\), the extension of the string is \(x\).
  1. Show that, while the string is taut, $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 k \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 k ^ { 2 } x = g$$ You are given that the general solution of this differential equation is $$x = \mathrm { e } ^ { - k t } ( C \sin k t + D \cos k t ) + \frac { g } { 2 k ^ { 2 } } , \quad \text { where } C \text { and } D \text { are constants. }$$
  2. Find the value of \(C\) and the value of \(D\). Assuming that the string remains taut,
  3. find the value of \(t\) when \(P\) first comes to rest,
  4. show that \(2 k ^ { 2 } a < g \left( 1 + \mathrm { e } ^ { \pi } \right)\).
Edexcel M4 2017 June Q6
13 marks Standard +0.8
6. A particle \(P\) of mass 0.2 kg is suspended from a fixed point by a light elastic spring. The spring has natural length 0.8 m and modulus of elasticity 7 N . At time \(t = 0\) the particle is released from rest from a point 0.2 metres vertically below its equilibrium position. The motion of \(P\) is resisted by a force of magnitude \(2 v\) newtons, where \(v \mathrm {~ms} ^ { - 1 }\) is the speed of \(P\). At time \(t\) seconds, \(P\) is \(x\) metres below its equilibrium position.
  1. Show that \(\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 10 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 43.75 x = 0\)
  2. Find \(x\) in terms of \(t\).
  3. Find the value of \(t\) when \(P\) first comes to instantaneous rest.
Edexcel M4 Q5
12 marks Standard +0.8
5. A particle \(P\) of mass \(m\) is fixed to one end of a light elastic string, of natural length \(a\) and modulus of elasticity \(2 m a n ^ { 2 }\). The other end of the string is attached to a fixed point \(O\). The particle \(P\) is released from rest at a point which is a distance \(2 a\) vertically below \(O\). The air resistance is modelled as having magnitude \(2 m n v\), where \(v\) is the speed of \(P\).
  1. Show that, when the extension of the string is \(x\), $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 n \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 n ^ { 2 } x = g$$
  2. Find \(x\) in terms of \(t\).
Edexcel M4 Specimen Q5
12 marks Challenging +1.2
5. An elastic string spring of modulus \(2 m g\) and natural length \(l\) is fixed at one end. To the other end is attached a mass \(m\) which is allowed to hang in equilibrium. The mass is then pulled vertically downwards through a distance \(l\) and released from rest. The air resistance is modelled as having magnitude \(2 m \omega v\), where \(v\) is the speed of the particle and \(\omega = \sqrt { \frac { g } { l } }\). The particle is at distance \(x\) from its equilibrium position at time \(t\).
  1. Show that \(\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \omega \frac { \mathrm {~d} x } { \mathrm {~d} t } + 2 \omega ^ { 2 } x = 0\).
  2. Find the general solution of this differential equation.
  3. Hence find the period of the damped harmonic motion.
Edexcel M5 2004 June Q6
15 marks Challenging +1.3
6. A particle \(P\) of mass 2 kg moves in the \(x - y\) plane. At time \(t\) seconds its position vector is \(\mathbf { r }\) metres. When \(t = 0\), the position vector of \(P\) is \(\mathbf { i }\) metres and the velocity of \(P\) is ( \(- \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). The vector \(\mathbf { r }\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } + 2 \mathbf { r } = \mathbf { 0 }$$
  1. Find \(\mathbf { r }\) in terms of \(t\).
  2. Show that the speed of \(P\) at time \(t\) is \(\mathrm { e } ^ { - t } \sqrt { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  3. Find, in terms of e, the loss of kinetic energy of \(P\) in the interval \(t = 0\) to \(t = 1\).
Edexcel M5 2009 June Q2
11 marks Challenging +1.2
2. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, where \(\mathbf { r }\) satisfies the vector differential equation $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 4 \mathbf { r } = \mathrm { e } ^ { 2 t } \mathbf { j }$$ When \(t = 0 , P\) has position vector \(( \mathbf { i } + \mathbf { j } ) \mathrm { m }\) and velocity \(2 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find an expression for \(\mathbf { r }\) in terms of \(t\).
Edexcel M5 2013 June Q1
7 marks Moderate -0.3
  1. A particle moves in a plane in such a way that its position vector \(\mathbf { r }\) metres at time \(t\) seconds satisfies the differential equation
$$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } - 2 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$ When \(t = 0\), the particle is at the origin and is moving with velocity \(( 4 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
Find \(\mathbf { r }\) in terms of \(t\).
Edexcel M5 2016 June Q2
13 marks Challenging +1.3
  1. A particle \(P\) is moving in a plane. At time \(t\) seconds the position vector of \(P\) is \(\mathbf { r }\) metres and the velocity of \(P\) is \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\). When \(t = \frac { \pi } { 2 } , P\) is instantaneously at rest at the point with position vector \(( \mathbf { i } - \mathbf { j } ) \mathrm { m }\).
Given that \(\mathbf { r }\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 4 \mathbf { r } = ( 3 \sin t ) \mathbf { i }$$ find \(\mathbf { v }\) in terms of \(t\).
(13)
Edexcel M5 2017 June Q2
10 marks Standard +0.3
2. [In this question, \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane and \(\mathbf { k }\) is a unit vector vertically upwards.] A particle of mass 2 kg moves under the action of a constant gravitational force \(- 19.6 \mathbf { k } \mathrm {~N}\). The particle is subject to a resistive force \(- \mathbf { v }\) newtons, where \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\) is the velocity of the particle at time \(t\) seconds.
  1. By writing down an equation of motion of the particle, show that \(\mathbf { v }\) satisfies the differential equation $$\frac { \mathrm { d } \mathbf { v } } { \mathrm {~d} t } + 0.5 \mathbf { v } = - 9.8 \mathbf { k }$$ When \(t = 0 , \mathbf { v } = ( 4 \mathbf { i } - 6 \mathbf { j } + 11.6 \mathbf { k } )\)
  2. Find \(\mathbf { v }\) when \(t = \ln 4\)