6. A particle \(P\) of mass 2 kg moves in the \(x - y\) plane. At time \(t\) seconds its position vector is \(\mathbf { r }\) metres. When \(t = 0\), the position vector of \(P\) is \(\mathbf { i }\) metres and the velocity of \(P\) is ( \(- \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
The vector \(\mathbf { r }\) satisfies the differential equation
$$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } + 2 \mathbf { r } = \mathbf { 0 }$$
- Find \(\mathbf { r }\) in terms of \(t\).
- Show that the speed of \(P\) at time \(t\) is \(\mathrm { e } ^ { - t } \sqrt { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Find, in terms of e, the loss of kinetic energy of \(P\) in the interval \(t = 0\) to \(t = 1\).