Edexcel M4 2017 June — Question 6

Exam BoardEdexcel
ModuleM4 (Mechanics 4)
Year2017
SessionJune
TopicSecond order differential equations

6. A particle \(P\) of mass 0.2 kg is suspended from a fixed point by a light elastic spring. The spring has natural length 0.8 m and modulus of elasticity 7 N . At time \(t = 0\) the particle is released from rest from a point 0.2 metres vertically below its equilibrium position. The motion of \(P\) is resisted by a force of magnitude \(2 v\) newtons, where \(v \mathrm {~ms} ^ { - 1 }\) is the speed of \(P\). At time \(t\) seconds, \(P\) is \(x\) metres below its equilibrium position.
  1. Show that \(\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 10 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 43.75 x = 0\)
  2. Find \(x\) in terms of \(t\).
  3. Find the value of \(t\) when \(P\) first comes to instantaneous rest.