2. [In this question, \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane and \(\mathbf { k }\) is a unit vector vertically upwards.]
A particle of mass 2 kg moves under the action of a constant gravitational force \(- 19.6 \mathbf { k } \mathrm {~N}\). The particle is subject to a resistive force \(- \mathbf { v }\) newtons, where \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\) is the velocity of the particle at time \(t\) seconds.
- By writing down an equation of motion of the particle, show that \(\mathbf { v }\) satisfies the differential equation
$$\frac { \mathrm { d } \mathbf { v } } { \mathrm {~d} t } + 0.5 \mathbf { v } = - 9.8 \mathbf { k }$$
When \(t = 0 , \mathbf { v } = ( 4 \mathbf { i } - 6 \mathbf { j } + 11.6 \mathbf { k } )\)
- Find \(\mathbf { v }\) when \(t = \ln 4\)