- Given that
$$\begin{aligned}
z _ { 1 } & = 3 \left( \cos \left( \frac { \pi } { 3 } \right) + \mathrm { i } \sin \left( \frac { \pi } { 3 } \right) \right)
z _ { 2 } & = \sqrt { 2 } \left( \cos \left( \frac { \pi } { 12 } \right) - \mathrm { i } \sin \left( \frac { \pi } { 12 } \right) \right)
\end{aligned}$$
- write down the exact value of
- \(\left| Z _ { 1 } Z _ { 2 } \right|\)
- \(\arg \left( \mathrm { z } _ { 1 } \mathrm { z } _ { 2 } \right)\)
Given that \(w = z _ { 1 } z _ { 2 }\) and that \(\arg \left( w ^ { n } \right) = 0\), where \(n \in \mathbb { Z } ^ { + }\)
- determine
- the smallest positive value of \(n\)
- the corresponding value of \(\left| w ^ { n } \right|\)