11 The complex number \(z\) is defined by \(z = \frac { 5 a - 2 \mathrm { i } } { 3 + a \mathrm { i } }\), where \(a\) is an integer. It is given that \(\arg z = - \frac { 1 } { 4 } \pi\).
- Find the value of \(a\) and hence express \(z\) in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.
- Express \(z ^ { 3 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Give the simplified exact values of \(r\) and \(\theta\).
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.