CAIE P3 2024 November — Question 5

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2024
SessionNovember
TopicComplex numbers 2

5
  1. The complex number \(u\) is given by $$u = \frac { \left( \cos \frac { 1 } { 7 } \pi + i \sin \frac { 1 } { 7 } \pi \right) ^ { 4 } } { \cos \frac { 1 } { 7 } \pi - i \sin \frac { 1 } { 7 } \pi }$$ Find the exact value of \(\arg u\).
  2. The complex numbers \(u\) and \(u ^ { * }\) are plotted on an Argand diagram. Describe the single geometrical transformation that maps \(u\) onto \(u ^ { * }\) and state the exact value of \(\arg u ^ { * }\).
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-06_2715_35_110_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-07_588_869_255_603} The variables \(x\) and \(y\) satisfy the equation \(a y = b ^ { x }\), where \(a\) and \(b\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points ( \(0.50,2.24\) ) and ( \(3.40,8.27\) ), as shown in the diagram. Find the values of \(a\) and \(b\). Give each value correct to 1 significant figure.