Bernoulli equation

Questions of the form dy/dx + P(x)y = Q(x)y^n where n ≠ 0,1, requiring substitution z = y^(1-n) to linearize.

12 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
Edexcel F2 2021 January Q4
9 marks Challenging +1.2
4. (a) Show that the substitution \(y ^ { 2 } = \frac { 1 } { z }\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y = 3 x y ^ { 3 } \quad y \neq 0$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 z = - 6 x$$ (b) Obtain the general solution of differential equation (II).
(c) Hence obtain the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\)
Edexcel F2 2023 January Q3
9 marks Standard +0.8
  1. (a) Show that the transformation \(y = \frac { 1 } { z }\) transforms the differential equation
$$x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + x y = 2 y ^ { 2 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - \frac { z } { x } = - \frac { 2 } { x ^ { 2 } }$$ (b) Solve differential equation (II) to determine \(z\) in terms of \(x\).
(c) Hence determine the particular solution of differential equation (I) for which \(y = - \frac { 3 } { 8 }\) at \(x = 3\) Give your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel F2 2024 January Q8
13 marks Challenging +1.8
  1. (a) For all the values of \(x\) where the identity is defined, prove that
$$\cot 2 x + \tan x \equiv \operatorname { cosec } 2 x$$ (b) Show that the substitution \(y ^ { 2 } = w \sin 2 x\), where \(w\) is a function of \(x\), transforms the differential equation $$y \frac { \mathrm {~d} y } { \mathrm {~d} x } + y ^ { 2 } \tan x = \sin x \quad 0 < x < \frac { \pi } { 2 }$$ into the differential equation $$\frac { \mathrm { d } w } { \mathrm {~d} x } + 2 w \operatorname { cosec } 2 x = \sec x \quad 0 < x < \frac { \pi } { 2 }$$ (c) By solving differential equation (II), determine a general solution of differential equation (I) in the form \(y ^ { 2 } = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a function in terms of \(\cos x\) $$\text { [You may use without proof } \left. \int \operatorname { cosec } 2 x \mathrm {~d} x = \frac { 1 } { 2 } \ln | \tan x | \text { (+ constant) } \right]$$
Edexcel F2 2015 June Q3
10 marks Challenging +1.2
  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$ (b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Edexcel F2 2021 June Q8
11 marks Challenging +1.2
8. (a) Show that the substitution \(v = y ^ { - 2 }\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 6 x y = 3 x \mathrm { e } ^ { x ^ { 2 } } y ^ { 3 } \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} x } - 12 v x = - 6 x \mathrm { e } ^ { x ^ { 2 } } \quad x > 0$$ (b) Hence find the general solution of the differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Leave blank
Q8

\hline &
\hline \end{tabular}
Edexcel F2 2023 June Q7
11 marks Challenging +1.2
  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y + 4 x ^ { 2 } y ^ { 3 } \ln x = 0 \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - \frac { 2 z } { x } = 8 x \ln x \quad x > 0$$ (b) By solving differential equation (II), determine the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\)
Edexcel F2 2024 June Q4
9 marks Challenging +1.2
  1. (a) Show that the substitution \(y ^ { 2 } = \frac { 1 } { t }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + y = x y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } t } { \mathrm {~d} x } - 2 t = - 2 x$$ (b) Solve differential equation (II) and determine \(y ^ { 2 }\) in terms of \(x\).
Edexcel FP2 2010 June Q7
12 marks Challenging +1.2
7. (a) Show that the transformation \(z = y ^ { \frac { 1 } { 2 } }\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - 4 y \tan x = 2 y ^ { \frac { 1 } { 2 } }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 2 z \tan x = 1$$ (b) Solve the differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence obtain the general solution of the differential equation (I).
Edexcel FP2 2014 June Q7
11 marks Challenging +1.2
7. (a) Show that the substitution \(v = y ^ { - 3 }\) transforms the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 2 x ^ { 4 } y ^ { 4 }$$ into the differential equation $$\begin{aligned} & \frac { \mathrm { d } v } { \mathrm {~d} x } - \frac { 3 v } { x } = - 6 x ^ { 3 } \\ & \text { ration (II), find a general solution of differential equation (I) } \end{aligned}$$ in the form \(y ^ { 3 } = \mathrm { f } ( x )\).
Edexcel F2 2018 Specimen Q3
10 marks Challenging +1.2
  1. (a) Show that the substitution \(z = y ^ { - 2 }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 x y = x \mathrm { e } ^ { - x ^ { 2 } } y ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 4 x z = - 2 x \mathrm { e } ^ { - x ^ { 2 } }$$ (b) Solve differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence find the general solution of differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
VIIIV SIHI NI J14M 10N OCVIIN SIHI NI III HM ION OOVERV SIHI NI JIIIM ION OO
Edexcel F2 Specimen Q7
12 marks Challenging +1.2
  1. (a) Show that the transformation \(z = y ^ { \frac { 1 } { 2 } }\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } - 4 y \tan x = 2 y ^ { \frac { 1 } { 2 } }$$ into the differential equation $$\frac { \mathrm { d } z } { \mathrm {~d} x } - 2 z \tan x = 1$$ (b) Solve the differential equation (II) to find \(z\) as a function of \(x\).
(c) Hence obtain the general solution of the differential equation (I).
$$\left[ \begin{array} { l l l } \text { Leave } \\ \text { blank } \\ \text { " } \\ \text { " } \\ \text { " } \end{array} & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \\ \text { " } & \end{array} \right.$$
OCR FP3 2011 June Q5
9 marks Challenging +1.2
5 The substitution \(y = u ^ { k }\), where \(k\) is an integer, is to be used to solve the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = x ^ { 2 } y ^ { 2 }$$ by changing it into an equation (B) in the variables \(u\) and \(x\).
  1. Show that equation (B) may be written in the form $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 3 } { k x } u = \frac { 1 } { k } x u ^ { k + 1 }$$
  2. Write down the value of \(k\) for which the integrating factor method may be used to solve equation (B).
  3. Using this value of \(k\), solve equation (B) and hence find the general solution of equation (A), giving your answer in the form \(y = \mathrm { f } ( x )\).
    (a) The set of polynomials \(\{ a x + b \}\), where \(a , b \in \mathbb { R }\), is denoted by \(P\). Assuming that the associativity property holds, prove that \(P\), under addition, is a group.
    (b) The set of polynomials \(\{ a x + b \}\), where \(a , b \in \{ 0,1,2 \}\), is denoted by \(Q\). It is given that \(Q\), under addition modulo 3 , is a group, denoted by \(( Q , + ( \bmod 3 ) )\).
  4. State the order of the group.
  5. Write down the inverse of the element \(2 x + 1\).
  6. \(\mathrm { q } ( x ) = a x + b\) is any element of \(Q\) other than the identity. Find the order of \(\mathrm { q } ( x )\) and hence determine whether \(( Q , + ( \bmod 3 ) )\) is a cyclic group.