Edexcel F2 2024 January — Question 8

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2024
SessionJanuary
TopicFirst order differential equations (integrating factor)

  1. (a) For all the values of \(x\) where the identity is defined, prove that
$$\cot 2 x + \tan x \equiv \operatorname { cosec } 2 x$$ (b) Show that the substitution \(y ^ { 2 } = w \sin 2 x\), where \(w\) is a function of \(x\), transforms the differential equation $$y \frac { \mathrm {~d} y } { \mathrm {~d} x } + y ^ { 2 } \tan x = \sin x \quad 0 < x < \frac { \pi } { 2 }$$ into the differential equation $$\frac { \mathrm { d } w } { \mathrm {~d} x } + 2 w \operatorname { cosec } 2 x = \sec x \quad 0 < x < \frac { \pi } { 2 }$$ (c) By solving differential equation (II), determine a general solution of differential equation (I) in the form \(y ^ { 2 } = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a function in terms of \(\cos x\) $$\text { [You may use without proof } \left. \int \operatorname { cosec } 2 x \mathrm {~d} x = \frac { 1 } { 2 } \ln | \tan x | \text { (+ constant) } \right]$$