Solve using sech/tanh identities

A question is this type if and only if it asks to solve an equation involving sech and/or tanh functions, typically requiring the identity sech²x = 1 - tanh²x or similar, giving answers in exact logarithmic form.

12 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2023 January Q3
6 marks Standard +0.8
  1. Solve the equation
$$4 \tanh x - \operatorname { sech } x = 1$$ giving your answer in the form \(x = \ln k\) where \(k\) is a fully simplified rational number.
(6)
Edexcel F3 2018 June Q1
6 marks Standard +0.3
  1. Solve the equation
$$15 \operatorname { sech } ^ { 2 } x + 7 \tanh x = 13$$ Give your answers in terms of simplified natural logarithms.
Edexcel FP3 Q1
6 marks Standard +0.8
  1. Find the exact values of x for which
$$4 \tanh ^ { 2 } x - 2 \operatorname { sech } ^ { 2 } x = 3 ,$$ giving your answers in the form \(\pm \ln \mathrm { a }\), where a is real.
Edexcel F3 2021 June Q1
6 marks Standard +0.3
  1. (a) Using the definitions of hyperbolic functions in terms of exponentials, show that
$$1 - \tanh ^ { 2 } x \equiv \operatorname { sech } ^ { 2 } x$$ (b) Solve the equation $$2 \operatorname { sech } ^ { 2 } x + 3 \tanh x = 3$$ giving your answer as an exact logarithm.
\includegraphics[max width=\textwidth, alt={}, center]{d7a92540-e36c-4e00-bbe4-b253e09962f8-03_2635_74_123_116}
Edexcel FP3 2009 June Q1
5 marks Standard +0.8
  1. Solve the equation
$$7 \operatorname { sech } x - \tanh x = 5$$ Give your answers in the form \(\ln a\) where \(a\) is a rational number.
Edexcel FP3 2014 June Q1
5 marks Standard +0.8
  1. Solve the equation
$$5 \tanh x + 7 = 5 \operatorname { sech } x$$ Give each answer in the form \(\ln k\) where \(k\) is a rational number.
OCR FP2 2010 January Q5
8 marks Standard +0.3
  1. Using the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1$$ Deduce that \(1 - \tanh ^ { 2 } x \equiv \operatorname { sech } ^ { 2 } x\).
  2. Solve the equation \(2 \tanh ^ { 2 } x - \operatorname { sech } x = 1\), giving your answer(s) in logarithmic form.
  3. Express \(\frac { 4 } { ( 1 - x ) ( 1 + x ) \left( 1 + x ^ { 2 } \right) }\) in partial fractions.
  4. Show that \(\int _ { 0 } ^ { \frac { 1 } { \sqrt { 3 } } } \frac { 4 } { 1 - x ^ { 4 } } \mathrm {~d} x = \ln \left( \frac { \sqrt { 3 } + 1 } { \sqrt { 3 } - 1 } \right) + \frac { 1 } { 3 } \pi\).
Edexcel FP3 Q1
6 marks Standard +0.8
  1. Solve the equation
$$7 \operatorname { sech } x - \tanh x = 5$$ Give your answers in the form \(\ln a\), where \(a\) is a rational number.
AQA FP2 2009 June Q4
15 marks Standard +0.3
4
  1. Sketch the graph of \(y = \tanh x\).
  2. Given that \(u = \tanh x\), use the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that $$x = \frac { 1 } { 2 } \ln \left( \frac { 1 + u } { 1 - u } \right)$$
    1. Show that the equation $$3 \operatorname { sech } ^ { 2 } x + 7 \tanh x = 5$$ can be written as $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$
    2. Show that the equation $$3 \tanh ^ { 2 } x - 7 \tanh x + 2 = 0$$ has only one solution for \(x\).
      Find this solution in the form \(\frac { 1 } { 2 } \ln a\), where \(a\) is an integer.
AQA FP2 2015 June Q2
11 marks Standard +0.3
2
  1. Sketch the graph of \(y = \tanh x\) and state the equations of its asymptotes.
  2. Use the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that $$\operatorname { sech } ^ { 2 } x + \tanh ^ { 2 } x = 1$$
  3. Solve the equation \(6 \operatorname { sech } ^ { 2 } x = 4 + \tanh x\), giving your answers in terms of natural logarithms.
    [0pt] [5 marks] \section*{Answer space for question 2}

  4. \includegraphics[max width=\textwidth, alt={}, center]{bc3aaed2-4aef-4aec-b657-098b1e581e55-04_855_1447_920_324}
AQA Further Paper 1 2021 June Q4
5 marks Challenging +1.2
4 Show that the solutions to the equation $$3 \tanh ^ { 2 } x - 2 \operatorname { sech } x = 2$$ can be expressed in the form $$x = \pm \ln ( a + \sqrt { b } )$$ where \(a\) and \(b\) are integers to be found.
You may use without proof the result \(\cosh ^ { - 1 } y = \ln \left( y + \sqrt { y ^ { 2 } - 1 } \right)\)
AQA Further Paper 1 2022 June Q6
8 marks Standard +0.8
6
  1. Given that \(| x | < 1\), prove that $$\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)$$ 6
  2. Solve the equation $$20 \operatorname { sech } ^ { 2 } x - 11 \tanh x = 16$$ Give your answer in logarithmic form.
    \(7 \quad\) The matrix \(\mathbf { M }\) is defined as $$\mathbf { M } = \left[ \begin{array} { c c c } 1 & 7 & - 3 \\ 3 & 6 & k + 1 \\ 1 & 3 & 2 \end{array} \right]$$ where \(k\) is a constant.