- (a) Using the definitions of hyperbolic functions in terms of exponentials, show that
$$1 - \tanh ^ { 2 } x \equiv \operatorname { sech } ^ { 2 } x$$
(b) Solve the equation
$$2 \operatorname { sech } ^ { 2 } x + 3 \tanh x = 3$$
giving your answer as an exact logarithm.
\includegraphics[max width=\textwidth, alt={}, center]{d7a92540-e36c-4e00-bbe4-b253e09962f8-03_2635_74_123_116}