OCR FP2 2010 January — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2010
SessionJanuary
TopicHyperbolic functions

  1. Using the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1$$ Deduce that \(1 - \tanh ^ { 2 } x \equiv \operatorname { sech } ^ { 2 } x\).
  2. Solve the equation \(2 \tanh ^ { 2 } x - \operatorname { sech } x = 1\), giving your answer(s) in logarithmic form.
  3. Express \(\frac { 4 } { ( 1 - x ) ( 1 + x ) \left( 1 + x ^ { 2 } \right) }\) in partial fractions.
  4. Show that \(\int _ { 0 } ^ { \frac { 1 } { \sqrt { 3 } } } \frac { 4 } { 1 - x ^ { 4 } } \mathrm {~d} x = \ln \left( \frac { \sqrt { 3 } + 1 } { \sqrt { 3 } - 1 } \right) + \frac { 1 } { 3 } \pi\).