Using the definitions of \(\sinh x\) and \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\), show that
$$\cosh ^ { 2 } x - \sinh ^ { 2 } x \equiv 1$$
Deduce that \(1 - \tanh ^ { 2 } x \equiv \operatorname { sech } ^ { 2 } x\).
Solve the equation \(2 \tanh ^ { 2 } x - \operatorname { sech } x = 1\), giving your answer(s) in logarithmic form.
Express \(\frac { 4 } { ( 1 - x ) ( 1 + x ) \left( 1 + x ^ { 2 } \right) }\) in partial fractions.