AQA Further Paper 1 2022 June — Question 6

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2022
SessionJune
TopicHyperbolic functions

6
  1. Given that \(| x | < 1\), prove that $$\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)$$ 6
  2. Solve the equation $$20 \operatorname { sech } ^ { 2 } x - 11 \tanh x = 16$$ Give your answer in logarithmic form.
    \(7 \quad\) The matrix \(\mathbf { M }\) is defined as $$\mathbf { M } = \left[ \begin{array} { c c c } 1 & 7 & - 3
    3 & 6 & k + 1
    1 & 3 & 2 \end{array} \right]$$ where \(k\) is a constant.