A question is this type if and only if it asks to solve an equation involving hyperbolic functions by making a substitution u = cosh x, u = sinh x, or u = tanh x, typically resulting in a quadratic equation in u, giving answers in exact logarithmic form.
17 questions · Standard +0.6
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AO | Guidance | ||||||||||||
| 1 | (a) | \includegraphics[max width=\textwidth, alt={}]{20816f61-154d-4491-9d2d-4c62687bf81e-08_395_674_200_575} |
|
| 4 lines drawn as shown to complete a parallelogram | Or 2 lines drawn to form a triangle which is either the upper or lower half of the parallelogram (split by the leading diagonal). eg | ||||||||||
| (b) | (i) | \includegraphics[max width=\textwidth, alt={}]{20816f61-154d-4491-9d2d-4c62687bf81e-08_374_630_712_568} |
|
|
|
| ||||||||||
| (b) | (ii) | \includegraphics[max width=\textwidth, alt={}]{20816f61-154d-4491-9d2d-4c62687bf81e-08_385_634_1154_578} |
|
|
| If no labels shown then B1B1 can only follow if there is no ambiguity between points (eg magnitudes shown). \(r = 0.35 , \theta = \frac { 5 } { 8 } \pi\) | ||||||||||
| Question | Answer | Marks | AO | Guidance | ||||
| 2 | \(\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1\) | M1 | 1.1a | Reduction to 3 term quadratic in \(\sinh x\) or \(\cosh ^ { 2 } x\) | ||||
| A1 | 1.1 | |||||||
| M1 | 1.1 | Use of \(\ln\) formula for \(\sinh ^ { - 1 }\) or \(\cosh ^ { - }\) 1 | ||||||
| \(\begin{aligned} | \sinh x = 1 / 2 \text { or } - 3 | |||||||
| x = \ln \left( \frac { 1 } { 2 } + \sqrt { \frac { 5 } { 4 } } \right) | ||||||||
| x = \ln \left( \frac { 1 } { 2 } + \frac { 1 } { 2 } \sqrt { 5 } \right) \end{aligned}\) | Must be in the correct form but | |||||||
| \(x = \ln ( - 3 + \sqrt { 10 } )\) | A1 | 1.1 | ||||||
| [6] | ||||||||
| 3 | (a) | The \(x\) - \(z\) plane |
| 2.2a | or \(y = 0\) | |||
| (b) | \(\begin{aligned} | \frac { 2 a - a ^ { 2 } } { 3 } = - 1 | ||||||
| a ^ { 2 } - 2 a - 3 = 0 \Rightarrow a = - 1,3 | ||||||||
| a > 0 \Rightarrow a = 3 \end{aligned}\) | B1 | 1.1 | \multirow{3}{*}{BC. Rearranging the quadratic equation and solving. discarding \(a = - 1\)} | \multirow{3}{*}{} | ||||
| М1 | 3.1a | |||||||
| A1 [3] | 2.3 | |||||||
| \multirow[t]{3}{*}{(c)} | \multirow[t]{3}{*}{Any reflection is self-inverse... oe \(\text { …so } \mathbf { A } ^ { 2 } = \mathbf { A } \mathbf { A } ^ { - 1 } = \mathbf { I }\)} | B1 | 2.4 | eg "If you do a reflection twice it gets back to where it started" | ||||
| B1 | 2.4 | |||||||
| [2] | ||||||||
| Question | Answer | Marks | AO | Guidance | |||||||||||
| 4 | (a) | \(\begin{aligned} | \cosh ( \mathrm { i } z ) = \frac { \mathrm { e } ^ { \mathrm { i } z } + \mathrm { e } ^ { - \mathrm { i } z } } { 2 } | ||||||||||||
| = \frac { \cos z + \mathrm { i } \sin z + \cos z - \mathrm { i } \sin z } { 2 } | |||||||||||||||
| = \frac { 2 \cos z } { 2 } = \cos z \quad \mathbf { A G } \end{aligned}\) |
|
|
| Proof must be complete for A1 | |||||||||||
| (b) | \(\begin{aligned} | \cos z = 2 = > \cosh ( \mathrm { i } z ) = 2 = > z = \left( \cosh ^ { - 1 } 2 \right) / \mathrm { i } | |||||||||||||
| = - \mathrm { i } \ln ( 2 + \sqrt { 3 } ) \end{aligned}\) |
| 3.1a 1.1 | ± inside or outside the \(\ln\) (ie allow eg \(i \ln ( 2 + \sqrt { 3 } )\) or \(i \ln ( 2 - \sqrt { 3 } )\) and condone eg \(\pm \mathrm { i } \ln ( 2 + \sqrt { } 3 )\) www) | or \(2 \pi n \pm \mathrm { i } \ln ( 2 + \sqrt { } 3 )\) for any integer \(n\) | |||||||||||
| 5 | (a) | (i) |
|
|
| If \(\mathbf { M 0 }\) then \(\mathbf { S C 1 }\) for \(\theta = A \cos \frac { 5 } { 2 } t\) or \(\theta = A \sin \frac { 5 } { 2 } t\) | |||||||||
| (a) | (ii) | The model predicts infinite oscillations of the same amplitude; in practice the amplitude must decrease over time. |
| 3.5b | |||||||||||
| Question | Answer | Marks | AO | Guidance | ||||
| (b) | (i) | AE: \(4 m ^ { 2 } + 16 m + 25 = 0\) | M1 | 1.1a | Writing down the AE correctly or using \(\theta = A \mathrm { e } ^ { m t }\) and substituting into (*) to derive a three term quadratic AE. | |||
| \(\begin{aligned} | - 2 \pm \frac { 3 } { 2 } \mathrm { i } | |||||||
| \theta = \mathrm { e } ^ { - 2 t } \left( A \cos \frac { 3 } { 2 } t + B \sin \frac { 3 } { 2 } t \right) \end{aligned}\) | A1ft | 1.1 | Their \(\mathrm { e } ^ { p t } ( A \cos q t + B \sin q t )\) for solution of \(\mathrm { AE } = p \pm q \mathrm { i }\) | |||||
| [3] | ||||||||
| (b) | (ii) | \(\begin{aligned} | t = 0 , \theta = 0.9 \Rightarrow A = 0.9 | |||||
| \frac { \mathrm {~d} \theta } { \mathrm {~d} t } = - 2 \mathrm { e } ^ { - 2 t } \left( A \cos \frac { 3 } { 2 } t + B \sin \frac { 3 } { 2 } t \right) | ||||||||
| + \mathrm { e } ^ { - 2 t } \left( - \frac { 3 } { 2 } A \sin \frac { 3 } { 2 } t + \frac { 3 } { 2 } B \cos \frac { 3 } { 2 } t \right) | ||||||||
| t = 0 , \frac { \mathrm {~d} \theta } { \mathrm {~d} t } = 0 \Rightarrow - 2 A + \frac { 3 } { 2 } B = 0 | ||||||||
| B = 1.2 | ||||||||
| \theta = \mathrm { e } ^ { - 2 t } \left( 0.9 \cos \frac { 3 } { 2 } t + 1.2 \sin \frac { 3 } { 2 } t \right) \end{aligned}\) | B1 M1 | 3.4 1.1 a | Attempt to differentiate using the product and chain rules ( \(A\) may be replaced by a number). | |||||
| Substituting \(t = 0\) into \(\frac { \mathrm { d } \theta } { \mathrm { d } t }\) to derive an equation in ( \(A\) and) \(B\) | ||||||||
| A1 | 1.1 | |||||||
| [4] | ||||||||
| (b) | (iii) | In the modified model \(\theta \rightarrow 0\) as \(t \rightarrow \infty\) oe This is the behaviour we would expect to observe with a real swing door and so the model is an improvement. | B1 B1 | 3.5a 3.5c | ie the amplitude decays etc | |||
| (c) |
| M1 | 3.5c | Using " \(b ^ { 2 } - 4 a c\) " \(= 0\) directly | or \(\left( 2 m + \frac { \lambda } { 4 } \right) ^ { 2 } + 25 - \frac { \lambda ^ { 2 } } { 16 } = 0\) and equating part outside brackets to 0 | |||
| A1 | 3.3 | Not -20 or \(\pm 20\) | ||||||
| [2] | ||||||||