AQA FP2 2014 June — Question 5 2 marks

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2014
SessionJune
Marks2
TopicHyperbolic functions

5
  1. Using the definition \(\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right)\), prove the identity $$4 \sinh ^ { 3 } \theta + 3 \sinh \theta = \sinh 3 \theta$$
  2. Given that \(x = \sinh \theta\) and \(16 x ^ { 3 } + 12 x - 3 = 0\), find the value of \(\theta\) in terms of a natural logarithm.
  3. Hence find the real root of the equation \(16 x ^ { 3 } + 12 x - 3 = 0\), giving your answer in the form \(2 ^ { p } - 2 ^ { q }\), where \(p\) and \(q\) are rational numbers.
    [0pt] [2 marks]