AQA
Further Paper 1
2024
June
— Question 9
4 marks
Exam Board
AQA
Module
Further Paper 1 (Further Paper 1)
Year
2024
Session
June
Marks
4
Topic
Hyperbolic functions
9
It is given that
Starting from the exponential definition of the sinh function, show that \(\sinh p = r\)
$$p = \ln \left( r + \sqrt { r ^ { 2 } + 1 } \right)$$
Staring fr
9
Solve the equation
$$\cosh ^ { 2 } x = 2 \sinh x + 16$$
Give your answers in logarithmic form. [0pt]
[4 marks]
The complex numbers \(z\) and \(w\) are defined by
$$\begin{aligned}
z & = \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 }
\text { and } \quad w & = \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 }
\end{aligned}$$
By evaluating the product \(z w\), show that
$$\tan \frac { 5 \pi } { 12 } = 2 + \sqrt { 3 }$$