AQA Further Paper 1 2024 June — Question 9 4 marks

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2024
SessionJune
Marks4
TopicHyperbolic functions

9
  1. It is given that Starting from the exponential definition of the sinh function, show that \(\sinh p = r\) $$p = \ln \left( r + \sqrt { r ^ { 2 } + 1 } \right)$$ Staring fr
    9
  2. Solve the equation $$\cosh ^ { 2 } x = 2 \sinh x + 16$$ Give your answers in logarithmic form.
    [0pt] [4 marks]
    The complex numbers \(z\) and \(w\) are defined by $$\begin{aligned} z & = \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 }
    \text { and } \quad w & = \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \end{aligned}$$ By evaluating the product \(z w\), show that $$\tan \frac { 5 \pi } { 12 } = 2 + \sqrt { 3 }$$