Solve |linear| < constant

Solve inequality where modulus of linear expression is less than a positive constant, e.g. |2x-7| > 3 or |4-5x| < 3.

22 questions · Easy -1.0

Sort by: Default | Easiest first | Hardest first
CAIE P2 2006 June Q1
3 marks Easy -1.2
1 Solve the inequality \(| 2 x - 7 | > 3\).
CAIE P2 2010 June Q1
3 marks Easy -1.2
1 Solve the inequality \(| 2 x - 3 | > 5\).
CAIE P2 2003 November Q1
3 marks Easy -1.2
1 Find the set of values of \(x\) satisfying the inequality \(| 8 - 3 x | < 2\).
CAIE P2 2010 November Q1
3 marks Easy -1.2
1 Solve the inequality \(| 3 x + 1 | > 8\).
CAIE P2 2011 November Q1
3 marks Easy -1.2
1 Solve the inequality \(| 4 - 5 x | < 3\).
OCR C3 Q1
5 marks Standard +0.3
  1. (i) Solve the inequality
$$| x - 0.2 | < 0.03$$ (ii) Hence, find all integers \(n\) such that $$\left| 0.95 ^ { n } - 0.2 \right| < 0.03$$
OCR MEI C3 2008 June Q1
4 marks Easy -1.2
1 Solve the inequality \(| 2 x - 1 | \leqslant 3\).
OCR MEI C3 Q2
4 marks Moderate -0.8
2
  1. Sketch the graph of \(y = | 2 x - 3 |\).
  2. Hence, or otherwise, solve the inequality \(| 2 x - 3 | < 5\). Illustrate your answer on your graph.
OCR MEI C3 Q4
4 marks Easy -1.2
4 Solve the inequality \(| 2 x + 1 | \geqslant 4\).
OCR MEI C3 Q7
3 marks Easy -1.2
7 Solve the inequality \(| x - 1 | < 3\).
OCR MEI C3 Q9
4 marks Easy -1.2
9 Solve the inequality \(| 2 x - 1 | \leqslant 3\).
CAIE P3 2020 Specimen Q3
4 marks Easy -1.3
3
  1. Sk tcht b g a \(\phi \quad y = | 2 x - 3 |\).
  2. Sb the in a \(\operatorname { litg } x \rightarrow \quad | 2 x - 3 |\).
OCR MEI C3 2009 January Q1
3 marks Easy -1.8
1 Solve the inequality \(| x - 1 | < 3\).
OCR MEI C3 2011 January Q2
4 marks Easy -1.2
2 Solve the inequality \(| 2 x + 1 | \geqslant 4\).
OCR MEI C3 2012 June Q2
3 marks Easy -1.2
2 Solve the inequality \(| 2 x + 1 | > 4\).
OCR MEI Paper 1 Specimen Q3
4 marks Easy -1.2
3 Solve the inequality \(| 2 x - 1 | \geq 4\).
OCR MEI Paper 2 2018 June Q2
3 marks Easy -1.8
2 Solve the inequality \(| 2 x + 1 | < 5\).
OCR MEI Paper 3 2023 June Q2
4 marks Moderate -0.8
2 The straight line \(y = 5 - 2 x\) is shown in the diagram. \includegraphics[max width=\textwidth, alt={}, center]{20639e13-01cc-4d96-b694-fb3cf1828f4d-04_705_773_881_239}
  1. On the copy of the diagram in the Printed Answer Booklet, sketch the graph of \(y = | 5 - 2 x |\).
  2. Solve the inequality \(| 5 - 2 x | < 3\).
OCR MEI Paper 3 2020 November Q2
4 marks Moderate -0.8
2 The graph of \(y = | 1 - x | - 2\) is shown in Fig. 2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a13f7a05-e2d3-4354-a0c7-ef7283eff514-04_625_1102_794_242} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Determine the set of values of \(x\) for which \(| 1 - x | > 2\).
AQA Further AS Paper 1 2018 June Q13
9 marks Moderate -0.8
13
  1. Find \(\mathrm { f } ( x )\) [0pt] [2 marks]
    13
  2. Sketch the graph of the function. \includegraphics[max width=\textwidth, alt={}, center]{1d017497-11b1-4096-b83a-63314188307e-14_867_1054_1795_493} 13
  3. Find the range of values of \(x\) for which \(\mathrm { f } ( x ) \leq 5\)
AQA Paper 1 2020 June Q4
5 marks Easy -1.2
4
  1. Sketch the graph of \includegraphics[max width=\textwidth, alt={}, center]{08e1f291-7052-40a5-b7b2-13fd1d0137c2-04_933_1093_349_475} 4
  2. Solve the inequality $$4 - | 2 x - 6 | > 2$$
AQA Further Paper 1 2023 June Q7
5 marks Standard +0.8
7 The function f is defined by $$f ( x ) = \left| \sin x + \frac { 1 } { 2 } \right| \quad ( 0 \leq x \leq 2 \pi )$$ Find the set of values of \(x\) for which $$f ( x ) \geq \frac { 1 } { 2 }$$ Give your answer in set notation.