A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Proof by induction
Q7
AQA FP2 2012 June — Question 7
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2012
Session
June
Topic
Proof by induction
7
Prove by induction that, for all integers \(n \geqslant 1\), $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 n + 1 } { n ^ { 2 } ( n + 1 ) ^ { 2 } } = 1 - \frac { 1 } { ( n + 1 ) ^ { 2 } }$$
Find the smallest integer \(n\) for which the sum of the series differs from 1 by less than \(10 ^ { - 5 }\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8