8. (i) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\)
$$\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = 1 - \frac { 1 } { ( n + 1 ) ^ { 2 } }$$
(ii) A sequence of positive rational numbers is defined by
$$\begin{aligned}
u _ { 1 } & = 3
u _ { n + 1 } & = \frac { 1 } { 3 } u _ { n } + \frac { 8 } { 9 } , \quad n \in \mathbb { Z } ^ { + }
\end{aligned}$$
Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\)
$$u _ { n } = 5 \times \left( \frac { 1 } { 3 } \right) ^ { n } + \frac { 4 } { 3 }$$