| Exam Board | CAIE |
| Module | Further Paper 1 (Further Paper 1) |
| Year | 2021 |
| Session | November |
| Topic | Proof by induction |
2 It is given that \(\mathrm { y } = \mathrm { xe } ^ { \mathrm { ax } }\), where \(a\) is a constant.
Prove by mathematical induction that, for all positive integers \(n\),
$$\frac { d ^ { n } y } { d x ^ { n } } = \left( a ^ { n } x + n a ^ { n - 1 } \right) e ^ { a x }$$