OCR MEI
C4
2010
June
Q4
5 marks
Moderate -0.3
4 Find the first three terms in the binomial expansion of \(\sqrt { 4 + x }\) in ascending powers of \(x\).
State the set of values of \(x\) for which the expansion is valid.
show that \(\frac { y - 2 } { y + 1 } = A \mathrm { e } ^ { x ^ { 3 } }\), where \(A\) is a constant.
(ii) Hence, given that \(x\) and \(y\) satisfy the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } ( y - 2 ) ( y + 1 ) ,$$
6 Solve the equation \(\tan \left( \theta + 45 ^ { \circ } \right) = 1 - 2 \tan \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 90 ^ { \circ }\).
Section B (36 marks)
7 A straight pipeline AB passes through a mountain. With respect to axes \(\mathrm { O } x y z\), with \(\mathrm { O } x\) due East, \(\mathrm { O } y\) due North and \(\mathrm { O } z\) vertically upwards, A has coordinates \(( - 200,100,0 )\) and B has coordinates \(( 100,200,100 )\), where units are metres.
Edexcel
Paper 1
Specimen
Q5
3 marks
Standard +0.3
5. A curve \(C\) has parametric equations
$$x = 2 t - 1 , \quad y = 4 t - 7 + \frac { 3 } { t } , \quad t \neq 0$$
Show that the Cartesian equation of the curve \(C\) can be written in the form
$$y = \frac { 2 x ^ { 2 } + a x + b } { x + 1 } , \quad x \neq - 1$$
where \(a\) and \(b\) are integers to be found.