Convert to Cartesian (polynomial/rational)

Questions asking to eliminate the parameter from polynomial or rational parametric equations to obtain a Cartesian equation y = f(x) or implicit form, where trigonometric identities are not the primary method.

33 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2018 June Q2
7 marks Moderate -0.3
2. A curve \(C\) has parametric equations $$x = \frac { 3 } { 2 } t - 5 , \quad y = 4 - \frac { 6 } { t } \quad t \neq 0$$
  1. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(t = 3\), giving your answer as a fraction in its simplest form.
  2. Show that a cartesian equation of \(C\) can be expressed in the form $$y = \frac { a x + b } { x + 5 } \quad x \neq k$$ where \(a , b\) and \(k\) are integers to be found.
Edexcel C34 2017 October Q10
13 marks Standard +0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2a6d0dba-d948-4124-9740-a88c17b0be65-32_556_716_237_607} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(C\) with parametric equations $$x = \frac { 20 t } { 2 t + 1 } \quad y = t ( t - 4 ) , \quad t > 0$$ The curve cuts the \(x\)-axis at the point \(P\).
  1. Find the \(x\) coordinate of \(P\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( t - A ) ( 2 t + 1 ) ^ { 2 } } { B }\) where \(A\) and \(B\) are constants to be found.
    1. Make \(t\) the subject of the formula $$x = \frac { 20 t } { 2 t + 1 }$$
    2. Hence find a cartesian equation of the curve \(C\). Write your answer in the form $$y = \mathrm { f } ( x ) , \quad 0 < x < k$$ where \(\mathrm { f } ( x )\) is a single fraction and \(k\) is a constant to be found.
Edexcel P4 2021 January Q4
7 marks Standard +0.3
4. The curve \(C\) is defined by the parametric equations $$x = \frac { 1 } { t } + 2 \quad y = \frac { 1 - 2 t } { 3 + t } \quad t > 0$$
  1. Show that the equation of \(C\) can be written in the form \(y = \mathrm { g } ( x )\) where g is the function $$\mathrm { g } ( x ) = \frac { a x + b } { c x + d } \quad x > k$$ where \(a , b , c , d\) and \(k\) are integers to be found.
  2. Hence, or otherwise, state the range of g .

Edexcel C4 2013 June Q3
7 marks Moderate -0.3
  1. A curve \(C\) has parametric equations
$$x = 2 t + 5 , \quad y = 3 + \frac { 4 } { t } , \quad t \neq 0$$
  1. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point on \(C\) with coordinates \(( 9,5 )\).
  2. Find a cartesian equation of the curve in the form $$y = \frac { a x + b } { c x + d }$$ where \(a\), \(b\), \(c\) and \(d\) are integers.
Edexcel C4 2017 June Q1
8 marks Moderate -0.3
  1. The curve \(C\) has parametric equations
$$x = 3 t - 4 , y = 5 - \frac { 6 } { t } , \quad t > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\) The point \(P\) lies on \(C\) where \(t = \frac { 1 } { 2 }\)
  2. Find the equation of the tangent to \(C\) at the point \(P\). Give your answer in the form \(y = p x + q\), where \(p\) and \(q\) are integers to be determined.
  3. Show that the cartesian equation for \(C\) can be written in the form $$y = \frac { a x + b } { x + 4 } , \quad x > - 4$$ where \(a\) and \(b\) are integers to be determined.
Edexcel P4 2022 October Q1
3 marks Moderate -0.3
  1. A curve \(C\) has parametric equations
$$x = \frac { t } { t - 3 } \quad y = \frac { 1 } { t } + 2 \quad t \in \mathbb { R } \quad t > 3$$ Show that all points on \(C\) lie on the curve with Cartesian equation $$y = \frac { a x - 1 } { b x }$$ where \(a\) and \(b\) are constants to be found.
OCR MEI C4 2007 June Q4
4 marks Moderate -0.8
4 A curve is defined by parametric equations $$x = \frac { 1 } { t } - 1 , y = \frac { 2 + t } { 1 + t }$$ Show that the cartesian equation of the curve is \(y = \frac { 3 + 2 x } { 2 + x }\).
OCR MEI C4 2010 June Q4
5 marks Moderate -0.3
4 Find the first three terms in the binomial expansion of \(\sqrt { 4 + x }\) in ascending powers of \(x\).
State the set of values of \(x\) for which the expansion is valid.
show that \(\frac { y - 2 } { y + 1 } = A \mathrm { e } ^ { x ^ { 3 } }\), where \(A\) is a constant.
(ii) Hence, given that \(x\) and \(y\) satisfy the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } ( y - 2 ) ( y + 1 ) ,$$ 6 Solve the equation \(\tan \left( \theta + 45 ^ { \circ } \right) = 1 - 2 \tan \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 90 ^ { \circ }\). Section B (36 marks)
7 A straight pipeline AB passes through a mountain. With respect to axes \(\mathrm { O } x y z\), with \(\mathrm { O } x\) due East, \(\mathrm { O } y\) due North and \(\mathrm { O } z\) vertically upwards, A has coordinates \(( - 200,100,0 )\) and B has coordinates \(( 100,200,100 )\), where units are metres.
OCR MEI C4 Q5
7 marks Moderate -0.8
5 A ball is thrown towards a hedge. Its position relative to the point from which it was thrown is given by the parametric equations $$x = 8 t , y = 10 t - 5 t ^ { 2 }$$
  1. Find the cartesian equation of the trajectory of the ball.
  2. The ball just clears the hedge. What can you say about the height of the hedge?
OCR C4 Q6
11 marks Standard +0.3
6. A curve has parametric equations $$x = \frac { t } { 2 - t } , \quad y = \frac { 1 } { 1 + t } , \quad - 1 < t < 2$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 1 } { 2 } \left( \frac { 2 - t } { 1 + t } \right) ^ { 2 }\).
  2. Find an equation for the normal to the curve at the point where \(t = 1\).
  3. Show that the cartesian equation of the curve can be written in the form $$y = \frac { 1 + x } { 1 + 3 x }$$
OCR C4 Q4
9 marks Standard +0.3
4. A curve has parametric equations $$x = t ^ { 3 } + 1 , \quad y = \frac { 2 } { t } , \quad t \neq 0$$
  1. Find an equation for the normal to the curve at the point where \(t = 1\), giving your answer in the form \(y = m x + c\).
  2. Find a cartesian equation for the curve in the form \(y = \mathrm { f } ( x )\).
OCR MEI C4 Q8
4 marks Moderate -0.8
8 A curve is defined by parametric equations $$x = \frac { 1 } { t } - 1 , y = \frac { 2 + t } { 1 + t }$$ Show that the cartesian equation of the curve is \(y = \frac { 3 + 2 x } { 2 + x }\).
OCR MEI C4 Q5
5 marks Moderate -0.3
5 A curve is defined parametrically by the equations $$x = \frac { 1 } { 1 + t } , \quad y = \frac { 1 - t } { 1 + 2 t }$$ Find \(t\) in terms of \(x\). Hence find the cartesian equation of the curve, giving your answer as simply as possible.
OCR C4 2011 January Q4
7 marks Moderate -0.3
4 A curve has parametric equations $$x = 2 + t ^ { 2 } , \quad y = 4 t$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the equation of the normal at the point where \(t = 4\), giving your answer in the form \(y = m x + c\).
  3. Find a cartesian equation of the curve.
OCR C4 2009 June Q5
9 marks Standard +0.3
5 A curve has parametric equations $$x = 2 t + t ^ { 2 } , \quad y = 2 t ^ { 2 } + t ^ { 3 }$$
  1. Express \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\) and find the gradient of the curve at the point \(( 3 , - 9 )\).
  2. By considering \(\frac { y } { x }\), find a cartesian equation of the curve, giving your answer in a form not involving fractions.
OCR C4 2010 June Q7
11 marks Moderate -0.3
7 The parametric equations of a curve are \(x = \frac { t + 2 } { t + 1 } , y = \frac { 2 } { t + 3 }\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } > 0\).
  2. Find the cartesian equation of the curve, giving your answer in a form not involving fractions.
OCR MEI C4 2011 January Q2
5 marks Moderate -0.3
2 A curve is defined parametrically by the equations $$x = \frac { 1 } { 1 + t } , \quad y = \frac { 1 - t } { 1 + 2 t }$$ Find \(t\) in terms of \(x\). Hence find the cartesian equation of the curve, giving your answer as simply as possible.
OCR H240/01 2018 June Q10
10 marks Standard +0.3
10 A curve has parametric equations \(x = t + \frac { 2 } { t }\) and \(y = t - \frac { 2 } { t }\), for \(t \neq 0\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\), giving your answer in its simplest form.
  2. Explain why the curve has no stationary points.
  3. By considering \(x + y\), or otherwise, find a cartesian equation of the curve, giving your answer in a form not involving fractions or brackets.
Edexcel Paper 1 Specimen Q5
3 marks Standard +0.3
5. A curve \(C\) has parametric equations $$x = 2 t - 1 , \quad y = 4 t - 7 + \frac { 3 } { t } , \quad t \neq 0$$ Show that the Cartesian equation of the curve \(C\) can be written in the form $$y = \frac { 2 x ^ { 2 } + a x + b } { x + 1 } , \quad x \neq - 1$$ where \(a\) and \(b\) are integers to be found.
OCR MEI Paper 1 2019 June Q12
6 marks Moderate -0.3
12 Fig. 12 shows a curve C with parametric equations \(x = 4 t ^ { 2 } , y = 4 t\). The point P , with parameter \(t\), is a general point on the curve. Q is the point on the line \(x + 4 = 0\) such that PQ is parallel to the \(x\)-axis. R is the point \(( 4,0 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{59e924e6-8fa9-4035-9173-705fce487bd9-6_766_584_413_255} \captionsetup{labelformat=empty} \caption{Fig. 12}
\end{figure}
  1. Show algebraically that P is equidistant from Q and R .
  2. Find a cartesian equation of C .
OCR MEI Paper 1 2022 June Q8
10 marks Moderate -0.3
8 A particle moves in the \(x - y\) plane so that its position at time \(t\) s is given by \(x = t ^ { 3 } - 8 t , y = t ^ { 2 }\) for \(- 3.5 < t < 3.5\). The units of distance are metres. The graph shows the path of the particle and the direction of travel at the point \(\mathrm { P } ( 8,4 )\).
\includegraphics[max width=\textwidth, alt={}, center]{9dd6fc6d-b51e-4a73-ace5-d26a7558032c-07_492_924_415_242}
  1. Find \(\frac { \mathrm { dy } } { \mathrm { dx } }\) in terms of \(t\).
  2. Hence show that the value of \(\frac { \mathrm { dy } } { \mathrm { dx } }\) at P is - 1 .
  3. Find the time at which the particle is travelling in the direction opposite to that at P .
  4. Find the cartesian equation of the path, giving \(x ^ { 2 }\) as a function of \(y\).
AQA C4 2012 January Q5
11 marks Moderate -0.3
5 A curve is defined by the parametric equations $$x = 8 t ^ { 2 } - t , \quad y = \frac { 3 } { t }$$
  1. Show that the cartesian equation of the curve can be written as \(x y ^ { 2 } + 3 y = k\), stating the value of the integer \(k\).
    (2 marks)
    1. Find an equation of the tangent to the curve at the point \(P\), where \(t = \frac { 1 } { 4 }\).
    2. Verify that the tangent at \(P\) intersects the curve when \(x = \frac { 3 } { 2 }\).
AQA C4 2010 June Q2
9 marks Moderate -0.5
2 A curve is defined by the parametric equations $$x = 1 - 3 t , \quad y = 1 + 2 t ^ { 3 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find an equation of the normal to the curve at the point where \(t = 1\).
  3. Find a cartesian equation of the curve.
AQA C4 2014 June Q1
5 marks Moderate -0.3
1 A curve is defined by the parametric equations \(x = \frac { t ^ { 2 } } { 2 } + 1 , y = \frac { 4 } { t } - 1\).
  1. Find the gradient at the point on the curve where \(t = 2\).
  2. Find a Cartesian equation of the curve.
    \includegraphics[max width=\textwidth, alt={}]{9f03a5f3-7fea-4fb7-b3bd-b4c0cdf662a2-02_1730_1709_977_153}
Edexcel C4 Q5
11 marks Standard +0.3
5. A curve has parametric equations $$x = \frac { t } { 2 - t } , \quad y = \frac { 1 } { 1 + t } , \quad - 1 < t < 2$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 1 } { 2 } \left( \frac { 2 - t } { 1 + t } \right) ^ { 2 }\).
  2. Find an equation for the normal to the curve at the point where \(t = 1\).
  3. Show that the cartesian equation of the curve can be written in the form $$y = \frac { 1 + x } { 1 + 3 x }$$
    1. continued
    2. (a) Find \(\int \tan ^ { 2 } x d x\).
    3. Show that
    $$\int \tan x \mathrm {~d} x = \ln | \sec x | + c$$ where \(c\) is an arbitrary constant. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{fe01157a-7617-43d3-900c-8d043bcbe784-10_566_789_648_504} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows part of the curve with equation \(y = x ^ { \frac { 1 } { 2 } } \tan x\).
    The shaded region bounded by the curve, the \(x\)-axis and the line \(x = \frac { \pi } { 3 }\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  4. Show that the volume of the solid formed is \(\frac { 1 } { 18 } \pi ^ { 2 } ( 6 \sqrt { 3 } - \pi ) - \pi \ln 2\).