- A curve \(C\) has parametric equations
$$x = \frac { t } { t - 3 } \quad y = \frac { 1 } { t } + 2 \quad t \in \mathbb { R } \quad t > 3$$
Show that all points on \(C\) lie on the curve with Cartesian equation
$$y = \frac { a x - 1 } { b x }$$
where \(a\) and \(b\) are constants to be found.