Area under parametric curve

A question is this type if and only if it requires finding the area of a region bounded by a parametric curve using integration with respect to the parameter.

26 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2015 January Q9
12 marks Standard +0.3
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{03548211-79cb-4629-b6ca-aa9dfcc77a33-15_618_899_262_566} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The curve \(C\) has parametric equations $$x = \ln ( t + 2 ) , \quad y = \frac { 4 } { t ^ { 2 } } \quad t > 0$$ The finite region \(R\), shown shaded in Figure 2, is bounded by the curve \(C\), the \(x\)-axis and the lines with equations \(x = \ln 3\) and \(x = \ln 5\)
  1. Show that the area of \(R\) is given by the integral $$\int _ { 1 } ^ { 3 } \frac { 4 } { t ^ { 2 } ( t + 2 ) } \mathrm { d } t$$
  2. Hence find an exact value for the area of \(R\). Write your answer in the form ( \(a + \ln b\) ), where \(a\) and \(b\) are rational numbers.
  3. Find a cartesian equation of the curve \(C\) in the form \(y = \mathrm { f } ( x )\).
Edexcel C34 2017 June Q14
16 marks Standard +0.8
14. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{29b56d51-120a-4275-a761-8b8aed7bca54-48_506_812_219_571} \captionsetup{labelformat=empty} \caption{Figure 6}
\end{figure} Figure 6 shows a sketch of the curve \(C\) with parametric equations $$x = 8 \cos ^ { 3 } \theta , \quad y = 6 \sin ^ { 2 } \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ Given that the point \(P\) lies on \(C\) and has parameter \(\theta = \frac { \pi } { 3 }\)
  1. find the coordinates of \(P\). The line \(l\) is the normal to \(C\) at \(P\).
  2. Show that an equation of \(l\) is \(y = x + 3.5\) The finite region \(S\), shown shaded in Figure 6, is bounded by the curve \(C\), the line \(l\), the \(y\)-axis and the \(x\)-axis.
  3. Show that the area of \(S\) is given by $$4 + 144 \int _ { 0 } ^ { \frac { \pi } { 3 } } \left( \sin \theta \cos ^ { 2 } \theta - \sin \theta \cos ^ { 4 } \theta \right) d \theta$$
  4. Hence, by integration, find the exact area of \(S\).
    (Solutions based entirely on graphical or numerical methods are not acceptable.)
    END
Edexcel C34 2018 October Q12
13 marks Standard +0.3
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c6bde466-61ec-437d-a3b4-84511a98d788-40_520_663_255_644} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with parametric equations $$x = 7 t ^ { 2 } - 5 , \quad y = t \left( 9 - t ^ { 2 } \right) , \quad t \in \mathbb { R }$$
  1. Find an equation of the tangent to \(C\) at the point where \(t = 1\) Write your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers. The curve \(C\) cuts the \(x\)-axis at the points \(A\) and \(B\), as shown in Figure 3
    1. Find the \(x\) coordinate of the point \(A\).
    2. Find the \(x\) coordinate of the point \(B\). The region \(R\), shown shaded in Figure 3, is enclosed by the loop of the curve \(C\).
  2. Use integration to find the area of \(R\).
Edexcel P4 2022 January Q5
10 marks Standard +0.8
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fe07afad-9cfc-48c0-84f1-5717f81977d4-14_688_691_251_630} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve with parametric equations $$x = \sqrt { 9 - 4 t } \quad y = \frac { t ^ { 3 } } { \sqrt { 9 + 4 t } } \quad 0 \leqslant t \leqslant \frac { 9 } { 4 }$$ The curve touches the \(x\)-axis when \(t = 0\) and meets the \(y\)-axis when \(t = \frac { 9 } { 4 }\) The region \(R\), shown shaded in Figure 2, is bounded by the curve, the \(x\)-axis and the \(y\)-axis.
  1. Show that the area of \(R\) is given by $$K \int _ { 0 } ^ { \frac { 9 } { 4 } } \frac { t ^ { 3 } } { \sqrt { 81 - 16 t ^ { 2 } } } \mathrm {~d} t$$ where \(K\) is a constant to be found.
  2. Using the substitution \(u = 81 - 16 t ^ { 2 }\), or otherwise, find the exact area of \(R\).
    (Solutions relying on calculator technology are not acceptable.)
Edexcel P4 2023 January Q8
11 marks Challenging +1.2
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c46ca445-cf59-4664-931e-add9f2f81851-26_582_773_255_648} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} \section*{In this question you must show all stages of your working.} \section*{Solutions relying entirely on calculator technology are not acceptable.} A curve \(C\) has parametric equations $$x = \sin ^ { 2 } t \quad y = 2 \tan t \quad 0 \leqslant t < \frac { \pi } { 2 }$$ The point \(P\) with parameter \(t = \frac { \pi } { 4 }\) lies on \(C\).
The line \(l\) is the normal to \(C\) at \(P\), as shown in Figure 3.
  1. Show, using calculus, that an equation for \(l\) is $$8 y + 2 x = 17$$ The region \(S\), shown shaded in Figure 3, is bounded by \(C , l\) and the \(x\)-axis.
  2. Find, using calculus, the exact area of \(S\).
Edexcel C4 2006 January Q8
12 marks Standard +0.3
8. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{9bf05d7e-7bb9-40f6-b626-69a8a6eda5a5-10_545_979_285_552}
\end{figure} The curve shown in Figure 2 has parametric equations $$x = t - 2 \sin t , \quad y = 1 - 2 \cos t , \quad 0 \leqslant t \leqslant 2 \pi$$
  1. Show that the curve crosses the \(x\)-axis where \(t = \frac { \pi } { 3 }\) and \(t = \frac { 5 \pi } { 3 }\). The finite region \(R\) is enclosed by the curve and the \(x\)-axis, as shown shaded in Figure 2.
  2. Show that the area of \(R\) is given by the integral $$\int _ { \frac { \pi } { 3 } } ^ { \frac { 5 \pi } { 3 } } ( 1 - 2 \cos t ) ^ { 2 } \mathrm {~d} t$$
  3. Use this integral to find the exact value of the shaded area.
Edexcel C4 2008 January Q7
15 marks Standard +0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ac7d862f-d10d-45ed-9077-ae4c7413cbf6-09_559_864_255_530} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The curve \(C\) has parametric equations $$x = \ln ( t + 2 ) , \quad y = \frac { 1 } { ( t + 1 ) } , \quad t > - 1$$ The finite region \(R\) between the curve \(C\) and the \(x\)-axis, bounded by the lines with equations \(x = \ln 2\) and \(x = \ln 4\), is shown shaded in Figure 3.
  1. Show that the area of \(R\) is given by the integral $$\int _ { 0 } ^ { 2 } \frac { 1 } { ( t + 1 ) ( t + 2 ) } \mathrm { d } t$$
  2. Hence find an exact value for this area.
  3. Find a cartesian equation of the curve \(C\), in the form \(y = \mathrm { f } ( x )\).
  4. State the domain of values for \(x\) for this curve. \(\_\_\_\_\)}
Edexcel C4 2010 January Q7
9 marks Standard +0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5ef3ae4a-a06d-48c1-8b79-7d7c3f95d120-12_734_1395_210_249} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 5 t ^ { 2 } - 4 , \quad y = t \left( 9 - t ^ { 2 } \right)$$ The curve \(C\) cuts the \(x\)-axis at the points \(A\) and \(B\).
  1. Find the \(x\)-coordinate at the point \(A\) and the \(x\)-coordinate at the point \(B\). The region \(R\), as shown shaded in Figure 2, is enclosed by the loop of the curve.
  2. Use integration to find the area of \(R\).
    \section*{LU}
Edexcel C4 2008 June Q8
16 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fb1924cc-9fa3-4fde-ba4d-6fb095f7f70b-11_639_972_228_484} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows the curve \(C\) with parametric equations $$x = 8 \cos t , \quad y = 4 \sin 2 t , \quad 0 \leqslant t \leqslant \frac { \pi } { 2 } .$$ The point \(P\) lies on \(C\) and has coordinates \(( 4,2 \sqrt { } 3 )\).
  1. Find the value of \(t\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\).
  2. Show that an equation for \(l\) is \(y = - x \sqrt { 3 } + 6 \sqrt { 3 }\). The finite region \(R\) is enclosed by the curve \(C\), the \(x\)-axis and the line \(x = 4\), as shown shaded in Figure 3.
  3. Show that the area of \(R\) is given by the integral \(\int _ { \frac { \pi } { 3 } } ^ { \frac { \pi } { 2 } } 64 \sin ^ { 2 } t \cos t \mathrm {~d} t\).
  4. Use this integral to find the area of \(R\), giving your answer in the form \(a + b \sqrt { } 3\), where \(a\) and \(b\) are constants to be determined.
Edexcel C4 2013 June Q7
12 marks
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08f62966-2e63-4542-a10a-c6453a3215e7-10_542_1164_251_477} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 27 \sec ^ { 3 } t , y = 3 \tan t , \quad 0 \leqslant t \leqslant \frac { \pi } { 3 }$$
  1. Find the gradient of the curve \(C\) at the point where \(t = \frac { \pi } { 6 }\)
  2. Show that the cartesian equation of \(C\) may be written in the form $$y = \left( x ^ { \frac { 2 } { 3 } } - 9 \right) ^ { \frac { 1 } { 2 } } , \quad a \leqslant x \leqslant b$$ stating the values of \(a\) and \(b\).
    (3) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{08f62966-2e63-4542-a10a-c6453a3215e7-10_581_1173_1628_475} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The finite region \(R\) which is bounded by the curve \(C\), the \(x\)-axis and the line \(x = 125\) is shown shaded in Figure 3. This region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  3. Use calculus to find the exact value of the volume of the solid of revolution.
Edexcel C4 2017 June Q8
12 marks Standard +0.8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cd958ff3-ed4e-4bd7-aa4b-339da6d618a6-28_721_714_255_616} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Diagram not drawn to scale Figure 4 shows a sketch of part of the curve \(C\) with parametric equations $$x = 3 \theta \sin \theta , \quad y = \sec ^ { 3 } \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The point \(P ( k , 8 )\) lies on \(C\), where \(k\) is a constant.
  1. Find the exact value of \(k\). The finite region \(R\), shown shaded in Figure 4, is bounded by the curve \(C\), the \(y\)-axis, the \(x\)-axis and the line with equation \(x = k\).
  2. Show that the area of \(R\) can be expressed in the form $$\lambda \int _ { \alpha } ^ { \beta } \left( \theta \sec ^ { 2 } \theta + \tan \theta \sec ^ { 2 } \theta \right) \mathrm { d } \theta$$ where \(\lambda , \alpha\) and \(\beta\) are constants to be determined.
  3. Hence use integration to find the exact value of the area of \(R\).
Edexcel P4 2021 June Q6
10 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{960fe82f-c180-422c-b409-a5cdc5fae924-18_563_844_255_552} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C\) with parametric equations $$x = 2 \cos 2 t \quad y = 4 \sin t \quad 0 \leqslant t \leqslant \frac { \pi } { 2 }$$ The region \(R\), shown shaded in Figure 3, is bounded by the curve, the \(x\)-axis and the \(y\)-axis.
    1. Show, making your working clear, that the area of \(R = \int _ { 0 } ^ { \frac { \pi } { 4 } } 32 \sin ^ { 2 } t \cos t d t\)
    2. Hence find, by algebraic integration, the exact value of the area of \(R\).
  1. Show that all points on \(C\) satisfy \(y = \sqrt { a x + b }\), where \(a\) and \(b\) are constants to be found. The curve \(C\) has equation \(y = \mathrm { f } ( x )\) where f is the function $$f ( x ) = \sqrt { a x + b } \quad - 2 \leqslant x \leqslant 2$$ and \(a\) and \(b\) are the constants found in part (b).
  2. State the range of f.
Edexcel AEA 2003 June Q3
11 marks Challenging +1.8
3. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{25f0c7cc-0701-4836-931e-0eff5145e029-2_441_1111_1598_551}
\end{figure} Figure 2 shows a sketch of a part of the curve \(C\) with parametric equations $$x = t ^ { 3 } , y = t ^ { 2 } .$$ The tangent at the point \(P ( 8,4 )\) cuts \(C\) at the point \(Q\) .
Find the area of the shaded region between \(P Q\) and \(C\) .
Edexcel AEA 2009 June Q6
17 marks Challenging +1.8
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{dfb57dc0-5831-4bbb-b1e5-58c4798215cb-5_700_684_246_694} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 2 \sin t , \quad y = \ln ( \sec t ) , \quad 0 \leqslant t < \frac { \pi } { 2 }$$ The tangent to \(C\) at the point \(P\) ,where \(t = \frac { \pi } { 3 }\) ,cuts the \(x\)-axis at \(A\) .
(a)Show that the \(x\)-coordinate of \(A\) is \(\frac { \sqrt { } 3 } { 3 } ( 3 - \ln 2 )\) . The shaded region \(R\) lies between \(C\) ,the positive \(x\)-axis and the tangent \(A P\) as shown in Figure 2 .
(b)Show that the area of \(R\) is \(\sqrt { 3 } ( 1 + \ln 2 ) - 2 \ln ( 2 + \sqrt { 3 } ) - \frac { \sqrt { 3 } } { 6 } ( \ln 2 ) ^ { 2 }\) .
OCR H240/03 2023 June Q5
9 marks Standard +0.8
5 A mathematics department is designing a new emblem to place on the walls outside its classrooms. The design for the emblem is shown in the diagram below. \includegraphics[max width=\textwidth, alt={}, center]{977ffad6-2440-46bf-9f17-0f30817d2ddf-05_453_1200_358_242} The emblem is modelled by the region between the \(x\)-axis and the curve with parametric equations \(x = 1 + 0.2 t - \cos t , \quad y = k \sin ^ { 2 } t\), where \(k\) is a positive constant and \(0 \leqslant t \leqslant \pi\). Lengths are in metres and the area of the emblem must be \(1 \mathrm {~m} ^ { 2 }\).
  1. Show that \(k \int _ { 0 } ^ { \pi } \left( 0.2 + \sin t - 0.2 \cos ^ { 2 } t - \sin t \cos ^ { 2 } t \right) \mathrm { d } t = 1\).
  2. Determine the exact value of \(k\).
Edexcel PMT Mocks Q16
6 marks Standard +0.3
16. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{48f9a252-61a2-491d-94d0-8470aee96942-24_771_1484_248_429} \captionsetup{labelformat=empty} \caption{Figure 8}
\end{figure} Figure 8 shows a sketch of the curve with parametric equations $$x = 4 \cos t \quad y = 2 \sin 2 t \quad 0 \leq t \leq \frac { \pi } { 2 }$$ where \(t\) is a parameter.
The finite region \(R\) is enclosed by the curve \(C\), the \(x\)-axis and the line \(x = 2\), as shown in Figure 7.
a. Show that the area of \(R\) is given by $$\int _ { \frac { \pi } { 3 } } ^ { \frac { \pi } { 2 } } 16 \sin ^ { 2 } t \cos t \mathrm {~d} t$$ b. Hence, using algebraic integration, find the exact area of \(R\), giving in the form \(a + b \sqrt { 3 }\), where \(a\) and \(b\) are constants to be determined.
Edexcel Paper 1 2022 June Q16
9 marks Challenging +1.2
16. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{129adfbb-98fa-4e88-b636-7b4d111f3349-46_770_999_242_534} \captionsetup{labelformat=empty} \caption{Figure 6}
\end{figure} Figure 6 shows a sketch of the curve \(C\) with parametric equations $$x = 8 \sin ^ { 2 } t \quad y = 2 \sin 2 t + 3 \sin t \quad 0 \leqslant t \leqslant \frac { \pi } { 2 }$$ The region \(R\), shown shaded in Figure 6, is bounded by \(C\), the \(x\)-axis and the line with equation \(x = 4\)
  1. Show that the area of \(R\) is given by $$\int _ { 0 } ^ { a } \left( 8 - 8 \cos 4 t + 48 \sin ^ { 2 } t \cos t \right) \mathrm { d } t$$ where \(a\) is a constant to be found.
  2. Hence, using algebraic integration, find the exact area of \(R\).
Edexcel Paper 2 2020 October Q12
11 marks Standard +0.3
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e28350e9-5090-4079-97da-e669ef9a5a7a-34_396_515_251_772} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The curve shown in Figure 3 has parametric equations $$x = 6 \sin t \quad y = 5 \sin 2 t \quad 0 \leqslant t \leqslant \frac { \pi } { 2 }$$ The region \(R\), shown shaded in Figure 3, is bounded by the curve and the \(x\)-axis.
    1. Show that the area of \(R\) is given by \(\int _ { 0 } ^ { \frac { \pi } { 2 } } 60 \sin t \cos ^ { 2 } t \mathrm {~d} t\)
    2. Hence show, by algebraic integration, that the area of \(R\) is exactly 20 \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{e28350e9-5090-4079-97da-e669ef9a5a7a-34_451_570_1416_742} \captionsetup{labelformat=empty} \caption{Figure 4}
      \end{figure} Part of the curve is used to model the profile of a small dam, shown shaded in Figure 4. Using the model and given that
      • \(x\) and \(y\) are in metres
  1. the vertical wall of the dam is 4.2 metres high
  2. there is a horizontal walkway of width \(M N\) along the top of the dam
  3. calculate the width of the walkway.
Edexcel Paper 2 Specimen Q10
9 marks Standard +0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{659a0479-c8c6-418b-b8a9-67ad68474023-22_554_862_260_603} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with parametric equations $$x = \ln ( t + 2 ) , \quad y = \frac { 1 } { t + 1 } , \quad t > - \frac { 2 } { 3 }$$
  1. State the domain of values of \(x\) for the curve \(C\). The finite region \(R\), shown shaded in Figure 4, is bounded by the curve \(C\), the line with equation \(x = \ln 2\), the \(x\)-axis and the line with equation \(x = \ln 4\)
  2. Use calculus to show that the area of \(R\) is \(\ln \left( \frac { 3 } { 2 } \right)\).
Edexcel C4 Q4
10 marks Standard +0.8
4. Figure 1 \includegraphics[max width=\textwidth, alt={}, center]{a1b078fe-96e3-4d62-bf0d-415294ba022f-4_588_1008_242_566} Figure 1 shows a cross-section \(R\) of a dam. The line \(A C\) is the vertical face of the dam, \(A B\) is the horizontal base and the curve \(B C\) is the profile. Taking \(x\) and \(y\) to be the horizontal and vertical axes, then \(A , B\) and \(C\) have coordinates \(( 0,0 ) , \left( 3 \pi ^ { 2 } , 0 \right)\) and \(( 0,30 )\) respectively. The area of the cross-section is to be calculated. Initially the profile \(B C\) is approximated by a straight line.
  1. Find an estimate for the area of the cross-section \(R\) using this approximation.
    (1) The profile \(B C\) is actually described by the parametric equations. $$x = 16 t ^ { 2 } - \pi ^ { 2 } , \quad y = 30 \sin 2 t , \quad \frac { \pi } { 4 } \leq t \leq \frac { \pi } { 2 }$$
  2. Find the exact area of the cross-section \(R\).
    (7)
  3. Calculate the percentage error in the estimate of the area of the cross-section \(R\) that you found in part (a).
    (2)
Edexcel C4 Q7
14 marks Standard +0.3
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e877dc80-4cfc-4c8b-9640-9b186cd7ab13-12_556_860_246_452} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the curve with parametric equations $$x = \cos 2 t , \quad y = \operatorname { cosec } t , \quad 0 < t < \frac { \pi } { 2 } .$$ The point \(P\) on the curve has \(x\)-coordinate \(\frac { 1 } { 2 }\).
  1. Find the value of the parameter \(t\) at \(P\).
  2. Show that the tangent to the curve at \(P\) has the equation $$y = 2 x + 1$$ The shaded region is bounded by the curve, the coordinate axes and the line \(x = \frac { 1 } { 2 }\).
  3. Show that the area of the shaded region is given by $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } k \cos t \mathrm {~d} t$$ where \(k\) is a positive integer to be found.
  4. Hence find the exact area of the shaded region.
    7. continued
    7. continued
Edexcel C4 Q6
10 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{922f404e-12d5-490b-9c8d-509f3a304c1e-10_438_700_255_518} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with parametric equations $$x = 2 - t ^ { 2 } , \quad y = t ( t + 1 ) , \quad t \geq 0$$
  1. Find the coordinates of the points where the curve meets the coordinate axes.
  2. Find the exact area of the region bounded by the curve and the coordinate axes.
    6. continued
Edexcel C4 Q6
12 marks Standard +0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{beeaedf6-62e8-4649-b023-1b7e2be9957e-10_524_734_146_532} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the curve with parametric equations $$x = t + \sin t , \quad y = \sin t , \quad 0 \leq t \leq \pi .$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find, in exact form, the coordinates of the point where the tangent to the curve is parallel to the \(x\)-axis.
  3. Show that the region bounded by the curve and the \(x\)-axis has area 2 .
    6. continued
OCR Mechanics 1 2018 September Q6
16 marks Standard +0.8
6 \includegraphics[max width=\textwidth, alt={}, center]{28beb431-45d5-4300-88fe-00d05d78790b-06_463_702_264_685} The diagram shows the curve \(C\) with parametric equations $$x = \frac { 1 } { 4 } \sin t , \quad y = t \cos t$$ where \(0 \leqslant t \leqslant k\).
  1. Find the value of \(k\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) in terms of \(t\). The maximum point on \(C\) is denoted by \(P\).
  3. Using your answer to part (ii) and the standard small angle approximations, find an approximation for the \(x\)-coordinate of \(P\).
  4. (a) Show that the area of the finite region bounded by \(C\) and the \(x\)-axis is given by $$b \int _ { 0 } ^ { a } t ( 1 + \cos 2 t ) \mathrm { d } t$$ where \(a\) and \(b\) are constants to be determined.
    (b) In this question you must show detailed reasoning. Hence find the exact area of the finite region bounded by \(C\) and the \(x\)-axis.
OCR Mechanics 1 2018 December Q6
15 marks Standard +0.8
6 \includegraphics[max width=\textwidth, alt={}, center]{918c616a-a0c7-4779-8d3c-84ddf1fa36d6-06_544_1232_251_260} The diagram shows the curve with parametric equations \(x = \ln \left( t ^ { 2 } - 4 \right) , \quad y = \frac { 4 } { t ^ { 2 } } , \quad\) where \(t > 2\). The shaded region \(R\) is enclosed by the curve, the \(x\)-axis and the lines \(x = \ln 5\) and \(x = \ln 12\).
  1. Show that the area of \(R\) is given by \(\int _ { a } ^ { b } \frac { 8 } { t \left( t ^ { 2 } - 4 \right) } \mathrm { d } t\),
    where \(a\) and \(b\) are constants to be determined.
  2. In this question you must show detailed reasoning. Hence find the exact area of \(R\), giving your answer in the form \(\ln k\), where \(k\) is a constant to be determined.
  3. Find a cartesian equation of the curve in the form \(y = \mathrm { f } ( x )\).