7.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5ef3ae4a-a06d-48c1-8b79-7d7c3f95d120-12_734_1395_210_249}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a sketch of the curve \(C\) with parametric equations
$$x = 5 t ^ { 2 } - 4 , \quad y = t \left( 9 - t ^ { 2 } \right)$$
The curve \(C\) cuts the \(x\)-axis at the points \(A\) and \(B\).
- Find the \(x\)-coordinate at the point \(A\) and the \(x\)-coordinate at the point \(B\).
The region \(R\), as shown shaded in Figure 2, is enclosed by the loop of the curve.
- Use integration to find the area of \(R\).
\section*{LU}