Area under parametric curve

A question is this type if and only if it requires finding the area of a region bounded by a parametric curve using integration with respect to the parameter.

26 questions · Standard +0.6

Sort by: Default | Easiest first | Hardest first
AQA Paper 1 2021 June Q14
10 marks Standard +0.3
14 The curve \(C\) is defined for \(t \geq 0\) by the parametric equations $$x = t ^ { 2 } + t \quad \text { and } \quad y = 4 t ^ { 2 } - t ^ { 3 }$$ \(C\) is shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{042e248a-9efa-4844-957d-f05715900ffc-26_691_608_541_717} 14
  1. Find the gradient of \(C\) at the point where it intersects the positive \(x\)-axis.
    14
    1. The area \(A\) enclosed between \(C\) and the \(x\)-axis is given by $$A = \int _ { 0 } ^ { b } y \mathrm {~d} x$$ Find the value of \(b\).
      14
  2. (ii) Use the substitution \(y = 4 t ^ { 2 } - t ^ { 3 }\) to show that $$A = \int _ { 0 } ^ { 4 } \left( 4 t ^ { 2 } + 7 t ^ { 3 } - 2 t ^ { 4 } \right) \mathrm { d } t$$ 14
  3. (iii) Find the value of \(A\).