Edexcel C4 2008 June — Question 8

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2008
SessionJune
TopicParametric equations

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fb1924cc-9fa3-4fde-ba4d-6fb095f7f70b-11_639_972_228_484} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows the curve \(C\) with parametric equations $$x = 8 \cos t , \quad y = 4 \sin 2 t , \quad 0 \leqslant t \leqslant \frac { \pi } { 2 } .$$ The point \(P\) lies on \(C\) and has coordinates \(( 4,2 \sqrt { } 3 )\).
  1. Find the value of \(t\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\).
  2. Show that an equation for \(l\) is \(y = - x \sqrt { 3 } + 6 \sqrt { 3 }\). The finite region \(R\) is enclosed by the curve \(C\), the \(x\)-axis and the line \(x = 4\), as shown shaded in Figure 3.
  3. Show that the area of \(R\) is given by the integral \(\int _ { \frac { \pi } { 3 } } ^ { \frac { \pi } { 2 } } 64 \sin ^ { 2 } t \cos t \mathrm {~d} t\).
  4. Use this integral to find the area of \(R\), giving your answer in the form \(a + b \sqrt { } 3\), where \(a\) and \(b\) are constants to be determined.