Edexcel C4 2008 January — Question 7

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2008
SessionJanuary
TopicParametric equations

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ac7d862f-d10d-45ed-9077-ae4c7413cbf6-09_559_864_255_530} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The curve \(C\) has parametric equations $$x = \ln ( t + 2 ) , \quad y = \frac { 1 } { ( t + 1 ) } , \quad t > - 1$$ The finite region \(R\) between the curve \(C\) and the \(x\)-axis, bounded by the lines with equations \(x = \ln 2\) and \(x = \ln 4\), is shown shaded in Figure 3.
  1. Show that the area of \(R\) is given by the integral $$\int _ { 0 } ^ { 2 } \frac { 1 } { ( t + 1 ) ( t + 2 ) } \mathrm { d } t$$
  2. Hence find an exact value for this area.
  3. Find a cartesian equation of the curve \(C\), in the form \(y = \mathrm { f } ( x )\).
  4. State the domain of values for \(x\) for this curve.
    \(\_\_\_\_\)}