Edexcel C4 2013 June — Question 7

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2013
SessionJune
TopicParametric equations

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08f62966-2e63-4542-a10a-c6453a3215e7-10_542_1164_251_477} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = 27 \sec ^ { 3 } t , y = 3 \tan t , \quad 0 \leqslant t \leqslant \frac { \pi } { 3 }$$
  1. Find the gradient of the curve \(C\) at the point where \(t = \frac { \pi } { 6 }\)
  2. Show that the cartesian equation of \(C\) may be written in the form $$y = \left( x ^ { \frac { 2 } { 3 } } - 9 \right) ^ { \frac { 1 } { 2 } } , \quad a \leqslant x \leqslant b$$ stating the values of \(a\) and \(b\).
    (3) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{08f62966-2e63-4542-a10a-c6453a3215e7-10_581_1173_1628_475} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The finite region \(R\) which is bounded by the curve \(C\), the \(x\)-axis and the line \(x = 125\) is shown shaded in Figure 3. This region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  3. Use calculus to find the exact value of the volume of the solid of revolution.