Iterative method for parameter

A question is this type if and only if it requires using an iterative formula to find a parameter value to a specified accuracy, typically showing intermediate iterations.

9 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P2 2021 June Q7
11 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{388d7076-636c-417d-84cb-e6e2a3e9a6a0-10_465_785_260_680} The diagram shows the curve with parametric equations $$x = 4 t + \mathrm { e } ^ { 2 t } , \quad y = 6 t \sin 2 t$$ for \(0 \leqslant t \leqslant 1\). The point \(P\) on the curve has parameter \(p\) and \(y\)-coordinate 3 .
  1. Show that \(p = \frac { 1 } { 2 \sin 2 p }\).
  2. Show by calculation that the value of \(p\) lies between 0.5 and 0.6 .
  3. Use an iterative formula, based on the equation in part (a), to find the value of \(p\) correct to 3 significant figures. Use an initial value of 0.55 and give the result of each iteration to 5 significant figures.
  4. Find the gradient of the curve at \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2021 June Q7
11 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{61df367d-741f-4906-8ab9-2f32e8711aa6-10_465_785_260_680} The diagram shows the curve with parametric equations $$x = 4 t + \mathrm { e } ^ { 2 t } , \quad y = 6 t \sin 2 t$$ for \(0 \leqslant t \leqslant 1\). The point \(P\) on the curve has parameter \(p\) and \(y\)-coordinate 3 .
  1. Show that \(p = \frac { 1 } { 2 \sin 2 p }\).
  2. Show by calculation that the value of \(p\) lies between 0.5 and 0.6 .
  3. Use an iterative formula, based on the equation in part (a), to find the value of \(p\) correct to 3 significant figures. Use an initial value of 0.55 and give the result of each iteration to 5 significant figures.
  4. Find the gradient of the curve at \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2023 November Q6
10 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{b104e2a7-06c8-4e2e-a4f9-5095ad56897a-10_803_394_269_863} The diagram shows the curve with parametric equations $$x = 3 \ln ( 2 t - 3 ) , \quad y = 4 t \ln t$$ The curve crosses the \(y\)-axis at the point \(A\). At the point \(B\), the gradient of the curve is 12 .
  1. Find the exact gradient of the curve at \(A\).
  2. Show that the value of the parameter \(t\) at \(B\) satisfies the equation $$t = \frac { 9 } { 1 + \ln t } + \frac { 3 } { 2 }$$
  3. Use an iterative formula, based on the equation in (b), to find the value of \(t\) at \(B\), giving your answer correct to 3 significant figures. Use an initial value of 5 and give the result of each iteration to 5 significant figures.
CAIE P2 2012 June Q6
9 marks Standard +0.8
6 A curve has parametric equations $$x = \frac { 1 } { ( 2 t + 1 ) ^ { 2 } } , \quad y = \sqrt { } ( t + 2 )$$ The point \(P\) on the curve has parameter \(p\) and it is given that the gradient of the curve at \(P\) is - 1 .
  1. Show that \(p = ( p + 2 ) ^ { \frac { 1 } { 6 } } - \frac { 1 } { 2 }\).
  2. Use an iterative process based on the equation in part (i) to find the value of \(p\) correct to 3 decimal places. Use a starting value of 0.7 and show the result of each iteration to 5 decimal places.
CAIE P3 2015 June Q10
10 marks Standard +0.3
10
\includegraphics[max width=\textwidth, alt={}, center]{3eefd6c1-924c-4b7e-8d17-a2942fb48234-3_515_508_1105_815} The diagram shows part of the curve with parametric equations $$x = 2 \ln ( t + 2 ) , \quad y = t ^ { 3 } + 2 t + 3$$
  1. Find the gradient of the curve at the origin.
  2. At the point \(P\) on the curve, the value of the parameter is \(p\). It is given that the gradient of the curve at \(P\) is \(\frac { 1 } { 2 }\).
    (a) Show that \(p = \frac { 1 } { 3 p ^ { 2 } + 2 } - 2\).
    (b) By first using an iterative formula based on the equation in part (a), determine the coordinates of the point \(P\). Give the result of each iteration to 5 decimal places and each coordinate of \(P\) correct to 2 decimal places.
CAIE P3 2015 November Q4
8 marks Standard +0.3
4 A curve has parametric equations $$x = t ^ { 2 } + 3 t + 1 , \quad y = t ^ { 4 } + 1$$ The point \(P\) on the curve has parameter \(p\). It is given that the gradient of the curve at \(P\) is 4 .
  1. Show that \(p = \sqrt [ 3 ] { } ( 2 p + 3 )\).
  2. Verify by calculation that the value of \(p\) lies between 1.8 and 2.0.
  3. Use an iterative formula based on the equation in part (i) to find the value of \(p\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
CAIE P2 2019 June Q6
10 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{f5e0b088-73db-405b-a832-aa01d9fcba64-08_396_716_260_712} The diagram shows the curve with parametric equations $$x = 3 t - 6 \mathrm { e } ^ { - 2 t } , \quad y = 4 t ^ { 2 } \mathrm { e } ^ { - t }$$ for \(0 \leqslant t \leqslant 2\). At the point \(P\) on the curve, the \(y\)-coordinate is 1 .
  1. Show that the value of \(t\) at the point \(P\) satisfies the equation \(t = \frac { 1 } { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } t }\).
  2. Use the iterative formula \(t _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } t _ { n } }\) with \(t _ { 1 } = 0.7\) to find the value of \(t\) at \(P\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
  3. Find the gradient of the curve at \(P\), giving the answer correct to 2 significant figures.
CAIE P2 2019 June Q6
10 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{0d15e5a1-d05f-48bc-8613-198804ff605c-08_396_716_260_712} The diagram shows the curve with parametric equations $$x = 3 t - 6 \mathrm { e } ^ { - 2 t } , \quad y = 4 t ^ { 2 } \mathrm { e } ^ { - t }$$ for \(0 \leqslant t \leqslant 2\). At the point \(P\) on the curve, the \(y\)-coordinate is 1 .
  1. Show that the value of \(t\) at the point \(P\) satisfies the equation \(t = \frac { 1 } { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } t }\).
  2. Use the iterative formula \(t _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { \frac { 1 } { 2 } t _ { n } }\) with \(t _ { 1 } = 0.7\) to find the value of \(t\) at \(P\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
  3. Find the gradient of the curve at \(P\), giving the answer correct to 2 significant figures.
CAIE P3 2020 Specimen Q4
9 marks Standard +0.3
4 Th \(\mathbf { p }\) rametric eq tion \(\mathbf { 6 }\) a cn \(\mathbf { E }\) are $$x = \mathrm { e } ^ { 2 t - 3 } , \quad y = 4 \ln t$$ wh re \(t > 0\) Wh \(\mathrm { n } t = a\) th \(\mathbf { g }\) ad en 6 th cn ⊕ is 2
  1. Sba that \(a\) satisfies th eq tin \(a = \frac { 1 } { 2 } ( 3 \quad \mathrm { n } a )\).
  2. Verifyb \(y c\) alch atin \(\mathbf { h }\) tth s eq tim sarb \(\mathbf { b }\) tween \(\mathbf { l } \mathbf { d }\)
  3. Use th iterati fo mlu a \(a _ { n + 1 } = \frac { 1 } { 2 } \left( 3 - \ln a _ { n } \right)\) to calch ate \(a\) correct to 2 d cimal p aces, sh ig th resh to each teratin od cimal \(p\) aces.