CAIE P3 2015 June — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2015
SessionJune
TopicParametric equations

10
\includegraphics[max width=\textwidth, alt={}, center]{3eefd6c1-924c-4b7e-8d17-a2942fb48234-3_515_508_1105_815} The diagram shows part of the curve with parametric equations $$x = 2 \ln ( t + 2 ) , \quad y = t ^ { 3 } + 2 t + 3$$
  1. Find the gradient of the curve at the origin.
  2. At the point \(P\) on the curve, the value of the parameter is \(p\). It is given that the gradient of the curve at \(P\) is \(\frac { 1 } { 2 }\).
    (a) Show that \(p = \frac { 1 } { 3 p ^ { 2 } + 2 } - 2\).
    (b) By first using an iterative formula based on the equation in part (a), determine the coordinates of the point \(P\). Give the result of each iteration to 5 decimal places and each coordinate of \(P\) correct to 2 decimal places.