Show dy/dx equals expression

A question is this type if and only if it requires proving that dy/dx simplifies to a given expression in terms of the parameter.

48 questions · Standard +0.0

Sort by: Default | Easiest first | Hardest first
CAIE P2 2010 November Q4
6 marks Standard +0.3
4 The parametric equations of a curve are $$x = 1 + \ln ( t - 2 ) , \quad y = t + \frac { 9 } { t } , \quad \text { for } t > 2$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \left( t ^ { 2 } - 9 \right) ( t - 2 ) } { t ^ { 2 } }\).
  2. Find the coordinates of the only point on the curve at which the gradient is equal to 0 .
CAIE P2 2011 November Q7
8 marks Standard +0.3
7 The parametric equations of a curve are $$x = \mathrm { e } ^ { 3 t } , \quad y = t ^ { 2 } \mathrm { e } ^ { t } + 3$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { t ( t + 2 ) } { 3 \mathrm { e } ^ { 2 t } }\).
  2. Show that the tangent to the curve at the point \(( 1,3 )\) is parallel to the \(x\)-axis.
  3. Find the exact coordinates of the other point on the curve at which the tangent is parallel to the \(x\)-axis.
CAIE P2 2011 November Q6
7 marks Standard +0.3
6 The parametric equations of a curve are $$x = 1 + 2 \sin ^ { 2 } \theta , \quad y = 4 \tan \theta$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sin \theta \cos ^ { 3 } \theta }\).
  2. Find the equation of the tangent to the curve at the point where \(\theta = \frac { 1 } { 4 } \pi\), giving your answer in the form \(y = m x + c\).
CAIE P2 2012 November Q4
6 marks Moderate -0.3
4 The parametric equations of a curve are $$x = \ln ( 1 - 2 t ) , \quad y = \frac { 2 } { t } , \quad \text { for } t < 0$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 t } { t ^ { 2 } }\).
  2. Find the exact coordinates of the only point on the curve at which the gradient is 3 .
CAIE P2 2013 November Q5
8 marks Standard +0.3
5 The parametric equations of a curve are $$x = \cos 2 \theta - \cos \theta , \quad y = 4 \sin ^ { 2 } \theta$$ for \(0 \leqslant \theta \leqslant \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 8 \cos \theta } { 1 - 4 \cos \theta }\).
  2. Find the coordinates of the point on the curve at which the gradient is - 4 .
CAIE P2 2015 November Q7
11 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{250b4df9-2646-4246-bb6d-2be92bf29598-3_553_689_258_726} The parametric equations of a curve are $$x = 6 \sin ^ { 2 } t , \quad y = 2 \sin 2 t + 3 \cos 2 t$$ for \(0 \leqslant t < \pi\). The curve crosses the \(x\)-axis at points \(B\) and \(D\) and the stationary points are \(A\) and \(C\), as shown in the diagram.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { 3 } \cot 2 t - 1\).
  2. Find the values of \(t\) at \(A\) and \(C\), giving each answer correct to 3 decimal places.
  3. Find the value of the gradient of the curve at \(B\).
CAIE P2 2015 November Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{7e100be2-9768-4fcd-b516-c714e53b0665-3_453_650_258_744} The diagram shows the curve with parametric equations $$x = 3 \cos t , \quad y = 2 \cos \left( t - \frac { 1 } { 6 } \pi \right)$$ for \(0 \leqslant t < 2 \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 3 } ( \sqrt { } 3 - \cot t )\).
  2. Find the equation of the tangent to the curve at the point where the curve crosses the positive \(y\)-axis. Give the answer in the form \(y = m x + c\).
CAIE P2 2016 November Q7
10 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{9bbcee46-c5b8-4836-a4b4-f317bf8b1c0a-3_533_698_735_717} The diagram shows the curve with parametric equations $$x = 4 \sin \theta , \quad y = 1 + 3 \cos \left( \theta + \frac { 1 } { 6 } \pi \right)$$ for \(0 \leqslant \theta < 2 \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) can be expressed in the form \(k ( 1 + ( \sqrt { } 3 ) \tan \theta )\) where the exact value of \(k\) is to be determined.
  2. Find the equation of the normal to the curve at the point where the curve crosses the positive \(y\)-axis. Give your answer in the form \(y = m x + c\), where the constants \(m\) and \(c\) are exact.
CAIE P2 Specimen Q7
11 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{77672e56-a268-47b8-ab8b-cd84b4b3de4f-10_551_689_258_726} The parametric equations of a curve are $$x = 6 \sin ^ { 2 } t , \quad y = 2 \sin 2 t + 3 \cos 2 t$$ for \(0 \leqslant t < \pi\). The curve crosses the \(x\)-axis at points \(B\) and \(D\) and the stationary points are \(A\) and \(C\), as shown in the diagram.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { 3 } \cot 2 t - 1\).
  2. Find the values of \(t\) at \(A\) and \(C\), giving each answer correct to 3 decimal places.
  3. Find the value of the gradient of the curve at \(B\).
CAIE P3 2022 June Q6
8 marks Standard +0.3
6 The parametric equations of a curve are \(x = \frac { 1 } { \cos t } , y = \ln \tan t\), where \(0 < t < \frac { 1 } { 2 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \cos t } { \sin ^ { 2 } t }\).
  2. Find the equation of the tangent to the curve at the point where \(y = 0\).
CAIE P3 2023 June Q4
5 marks Standard +0.3
4 The parametric equations of a curve are $$x = \frac { \cos \theta } { 2 - \sin \theta } , \quad y = \theta + 2 \cos \theta$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = ( 2 - \sin \theta ) ^ { 2 }\).
CAIE P3 2022 March Q4
5 marks Moderate -0.3
4 The parametric equations of a curve are $$x = 1 - \cos \theta , \quad y = \cos \theta - \frac { 1 } { 4 } \cos 2 \theta$$ Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 2 \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right)\).
CAIE P3 2023 March Q5
6 marks Moderate -0.3
5 The parametric equations of a curve are $$x = t \mathrm { e } ^ { 2 t } , \quad y = t ^ { 2 } + t + 3$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { - 2 t }\).
  2. Hence show that the normal to the curve, where \(t = - 1\), passes through the point \(\left( 0,3 - \frac { 1 } { \mathrm { e } ^ { 4 } } \right)\).
CAIE P3 2020 November Q3
5 marks Moderate -0.8
3 The parametric equations of a curve are $$x = 3 - \cos 2 \theta , \quad y = 2 \theta + \sin 2 \theta$$ for \(0 < \theta < \frac { 1 } { 2 } \pi\).
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \cot \theta\).
CAIE P3 2022 November Q4
5 marks Standard +0.3
4 The parametric equations of a curve are $$x = 2 t - \tan t , \quad y = \ln ( \sin 2 t )$$ for \(0 < t < \frac { 1 } { 2 } \pi\).
Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \cot t\).
CAIE P3 2024 November Q8
8 marks Standard +0.3
8 The parametric equations of a curve are $$x = \tan ^ { 2 } 2 t , \quad y = \cos 2 t$$ for \(0 < t < \frac { 1 } { 4 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 1 } { 2 } \cos ^ { 3 } 2 t\).
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-10_2716_38_109_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-11_2725_35_99_20}
  2. Hence find the equation of the normal to the curve at the point where \(t = \frac { 1 } { 8 } \pi\). Give your answer in the form \(y = m x + c\).
CAIE P3 2024 November Q7
8 marks Standard +0.3
7 The parametric equations of a curve are $$x = 3 \sin 2 t , \quad y = \tan t + \cot t$$ for \(0 < t < \frac { 1 } { 2 } \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { - 2 } { 3 \sin ^ { 2 } 2 t }\).
    \includegraphics[max width=\textwidth, alt={}, center]{6280ab81-0bdb-47b4-8651-bff1261a0adf-10_2716_40_109_2009}
    \includegraphics[max width=\textwidth, alt={}, center]{6280ab81-0bdb-47b4-8651-bff1261a0adf-11_2723_33_99_22}
  2. Find the equation of the normal to the curve at the point where \(t = \frac { 1 } { 4 } \pi\). Give your answer in the form \(p y + q x + r = 0\), where \(p , q\) and \(r\) are integers.
Edexcel C34 2016 January Q13
14 marks Standard +0.3
13. A curve \(C\) has parametric equations $$x = 6 \cos 2 t , \quad y = 2 \sin t , \quad - \frac { \pi } { 2 } < t < \frac { \pi } { 2 }$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \lambda \operatorname { cosec } t\), giving the exact value of the constant \(\lambda\).
  2. Find an equation of the normal to \(C\) at the point where \(t = \frac { \pi } { 3 }\) Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are simplified surds. The cartesian equation for the curve \(C\) can be written in the form $$x = f ( y ) , \quad - k < y < k$$ where \(\mathrm { f } ( y )\) is a polynomial in \(y\) and \(k\) is a constant.
  3. Find \(\mathrm { f } ( y )\).
  4. State the value of \(k\).
Edexcel C4 2012 June Q6
12 marks Moderate -0.3
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12fbfe89-60fe-4890-9a22-2b1988d05d33-09_831_784_127_580} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of the curve \(C\) with parametric equations $$x = ( \sqrt { } 3 ) \sin 2 t , \quad y = 4 \cos ^ { 2 } t , \quad 0 \leqslant t \leqslant \pi$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = k ( \sqrt { } 3 ) \tan 2 t\), where \(k\) is a constant to be determined.
  2. Find an equation of the tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\). Give your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
  3. Find a cartesian equation of \(C\).
Edexcel P4 2023 October Q8
14 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7f5fc83d-ab7c-4edb-a2c6-7a58f1357d5a-24_579_642_251_715} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C\) with parametric equations $$x = 6 t - 3 \sin 2 t \quad y = 2 \cos t \quad 0 \leqslant t \leqslant \frac { \pi } { 2 }$$ The curve meets the \(y\)-axis at 2 and the \(x\)-axis at \(k\), where \(k\) is a constant.
  1. State the value of \(k\).
  2. Use parametric differentiation to show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \lambda \operatorname { cosec } t$$ where \(\lambda\) is a constant to be found. The point \(P\) with parameter \(\mathrm { t } = \frac { \pi } { 4 }\) lies on \(C\).
    The tangent to \(C\) at the point \(P\) cuts the \(y\)-axis at the point \(N\).
  3. Find the exact \(y\) coordinate of \(N\), giving your answer in simplest form. The region bounded by the curve, the \(x\)-axis and the \(y\)-axis is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
    1. Show that the volume of this solid is given by $$\int _ { 0 } ^ { \alpha } \beta ( 1 - \cos 4 t ) d t$$ where \(\alpha\) and \(\beta\) are constants to be found.
    2. Hence, using algebraic integration, find the exact volume of this solid.
Edexcel P4 2018 Specimen Q4
9 marks Standard +0.3
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4de08317-5fb9-4789-8d57-ccf463224c78-10_899_759_127_621} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with parametric equations $$x = \sqrt { 3 } \sin 2 t \quad y = 4 \cos ^ { 2 } t \quad 0 \leqslant t \leqslant \pi$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = k \sqrt { 3 } \tan 2 t\), where \(k\) is a constant to be found.
  2. Find an equation of the tangent to \(C\) at the point where \(t = \frac { \pi } { 3 }\) Give your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
AQA C4 2011 June Q4
13 marks Standard +0.2
4
  1. A curve is defined by the parametric equations \(x = 3 \cos 2 \theta , y = 2 \cos \theta\).
    1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { k \cos \theta }\), where \(k\) is an integer.
    2. Find an equation of the normal to the curve at the point where \(\theta = \frac { \pi } { 3 }\).
  2. Find the exact value of \(\int _ { - \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \sin ^ { 2 } x \mathrm {~d} x\).
WJEC Unit 3 2024 June Q11
10 marks Moderate -0.3
11. A curve is defined parametrically by $$x = 2 \theta + \sin 2 \theta , \quad y = 1 + \cos 2 \theta$$
  1. Show that the gradient of the curve at the point with parameter \(\theta\) is \(- \tan \theta\).
  2. Find the equation of the tangent to the curve at the point where \(\theta = \frac { \pi } { 4 }\).