6
\includegraphics[max width=\textwidth, alt={}, center]{7e100be2-9768-4fcd-b516-c714e53b0665-3_453_650_258_744}
The diagram shows the curve with parametric equations
$$x = 3 \cos t , \quad y = 2 \cos \left( t - \frac { 1 } { 6 } \pi \right)$$
for \(0 \leqslant t < 2 \pi\).
- Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 3 } ( \sqrt { } 3 - \cot t )\).
- Find the equation of the tangent to the curve at the point where the curve crosses the positive \(y\)-axis. Give the answer in the form \(y = m x + c\).