Edexcel C34 2018 June — Question 14

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionJune
TopicProduct & Quotient Rules

14. Given that $$y = \frac { \left( x ^ { 2 } - 4 \right) ^ { \frac { 1 } { 2 } } } { x ^ { 3 } } \quad x > 2$$
  1. show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { A x ^ { 2 } + 12 } { x ^ { 4 } \left( x ^ { 2 } - 4 \right) ^ { \frac { 1 } { 2 } } } \quad x > 2$$ where \(A\) is a constant to be found. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a377da06-a968-438c-bec2-ae55283dae47-48_593_1134_865_395} \captionsetup{labelformat=empty} \caption{Figure 4}
    \end{figure} Figure 4 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = \frac { 24 \left( x ^ { 2 } - 4 \right) ^ { \frac { 1 } { 2 } } } { x ^ { 3 } } \quad x > 2$$
  2. Use your answer to part (a) to find the range of f.
  3. State a reason why f-1 does not exist.