Edexcel C34 2018 June — Question 8

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionJune
TopicVectors 3D & Lines

8. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r } 1
- 3
2 \end{array} \right) + \lambda \left( \begin{array} { l } 1
2
3 \end{array} \right) , \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 6
4
1 \end{array} \right) + \mu \left( \begin{array} { r } 1
1
- 1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) do not meet. The point \(P\) is on \(l _ { 1 }\) where \(\lambda = 0\), and the point \(Q\) is on \(l _ { 2 }\) where \(\mu = - 1\)
  2. Find the acute angle between the line segment \(P Q\) and \(l _ { 1 }\), giving your answer in degrees to 2 decimal places.
  3. Find the shortest distance from the point \(Q\) to the line \(l _ { 1 }\), giving your answer to 3 significant figures.