6. (a) Express \(\sqrt { 5 } \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\)
State the value of \(R\) and give the value of \(\alpha\) to 4 significant figures.
(b) Solve, for \(- \pi < \theta < \pi\),
$$\sqrt { 5 } \cos \theta - 2 \sin \theta = 0.5$$
giving your answers to 3 significant figures. [Solutions based entirely on graphical or numerical methods are not acceptable.]
$$\mathrm { f } ( x ) = A ( \sqrt { 5 } \cos \theta - 2 \sin \theta ) + B \quad \theta \in \mathbb { R }$$
where \(A\) and \(B\) are constants.
Given that the range of f is
$$- 15 \leqslant f ( x ) \leqslant 33$$
(c) find the value of \(B\) and the possible values of \(A\).