Edexcel C34 2017 January — Question 14

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2017
SessionJanuary
TopicVectors: Lines & Planes

  1. \(A B C D\) is a parallelogram with \(A B\) parallel to \(D C\) and \(A D\) parallel to \(B C\). The position vectors of \(A , B , C\), and \(D\) relative to a fixed origin \(O\) are \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) respectively.
Given that $$\mathbf { a } = \mathbf { i } + \mathbf { j } - 2 \mathbf { k } , \quad \mathbf { b } = 3 \mathbf { i } - \mathbf { j } + 6 \mathbf { k } , \quad \mathbf { c } = - \mathbf { i } + 3 \mathbf { j } + 6 \mathbf { k }$$
  1. find the position vector \(\mathbf { d }\),
  2. find the angle between the sides \(A B\) and \(B C\) of the parallelogram,
  3. find the area of the parallelogram \(A B C D\). The point \(E\) lies on the line through the points \(C\) and \(D\), so that \(D\) is the midpoint of \(C E\).
  4. Use your answer to part (c) to find the area of the trapezium \(A B C E\).